2*x e - 1 -------- 2*x e + 1
(exp(2*x) - 1)/(exp(2*x) + 1)
Apply the quotient rule, which is:
and .
To find :
Differentiate term by term:
The derivative of the constant is zero.
Let .
The derivative of is itself.
Then, apply the chain rule. Multiply by :
The derivative of a constant times a function is the constant times the derivative of the function.
Apply the power rule: goes to
So, the result is:
The result of the chain rule is:
The result is:
To find :
Differentiate term by term:
The derivative of the constant is zero.
Let .
The derivative of is itself.
Then, apply the chain rule. Multiply by :
The derivative of a constant times a function is the constant times the derivative of the function.
Apply the power rule: goes to
So, the result is:
The result of the chain rule is:
The result is:
Now plug in to the quotient rule:
Now simplify:
The answer is:
2*x / 2*x \ 2*x 2*e 2*\e - 1/*e -------- - ----------------- 2*x 2 e + 1 / 2*x \ \e + 1/
/ / 2*x \ \ | | 2*e | / 2*x\| | |1 - --------|*\-1 + e /| | 2*x | 2*x| | | 2*e \ 1 + e / | 2*x 4*|1 - -------- - --------------------------|*e | 2*x 2*x | \ 1 + e 1 + e / -------------------------------------------------- 2*x 1 + e
/ / 2*x 4*x \ \ | / 2*x\ | 6*e 6*e | / 2*x \ | | \-1 + e /*|1 - -------- + -----------| | 2*e | 2*x| | | 2*x 2| 3*|1 - --------|*e | | 2*x | 1 + e / 2*x\ | | 2*x| | | 3*e \ \1 + e / / \ 1 + e / | 2*x 8*|1 - -------- - ---------------------------------------- - ---------------------|*e | 2*x 2*x 2*x | \ 1 + e 1 + e 1 + e / ---------------------------------------------------------------------------------------- 2*x 1 + e