Mister Exam

Other calculators

Derivative of (exp(2x)-1)/(exp(2x)+1)

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
 2*x    
e    - 1
--------
 2*x    
e    + 1
$$\frac{e^{2 x} - 1}{e^{2 x} + 1}$$
(exp(2*x) - 1)/(exp(2*x) + 1)
Detail solution
  1. Apply the quotient rule, which is:

    and .

    To find :

    1. Differentiate term by term:

      1. The derivative of the constant is zero.

      2. Let .

      3. The derivative of is itself.

      4. Then, apply the chain rule. Multiply by :

        1. The derivative of a constant times a function is the constant times the derivative of the function.

          1. Apply the power rule: goes to

          So, the result is:

        The result of the chain rule is:

      The result is:

    To find :

    1. Differentiate term by term:

      1. The derivative of the constant is zero.

      2. Let .

      3. The derivative of is itself.

      4. Then, apply the chain rule. Multiply by :

        1. The derivative of a constant times a function is the constant times the derivative of the function.

          1. Apply the power rule: goes to

          So, the result is:

        The result of the chain rule is:

      The result is:

    Now plug in to the quotient rule:

  2. Now simplify:


The answer is:

The graph
The first derivative [src]
    2*x      / 2*x    \  2*x
 2*e       2*\e    - 1/*e   
-------- - -----------------
 2*x                    2   
e    + 1      / 2*x    \    
              \e    + 1/    
$$- \frac{2 \left(e^{2 x} - 1\right) e^{2 x}}{\left(e^{2 x} + 1\right)^{2}} + \frac{2 e^{2 x}}{e^{2 x} + 1}$$
The second derivative [src]
  /               /        2*x \            \     
  |               |     2*e    | /      2*x\|     
  |               |1 - --------|*\-1 + e   /|     
  |        2*x    |         2*x|            |     
  |     2*e       \    1 + e   /            |  2*x
4*|1 - -------- - --------------------------|*e   
  |         2*x                 2*x         |     
  \    1 + e               1 + e            /     
--------------------------------------------------
                          2*x                     
                     1 + e                        
$$\frac{4 \left(- \frac{\left(1 - \frac{2 e^{2 x}}{e^{2 x} + 1}\right) \left(e^{2 x} - 1\right)}{e^{2 x} + 1} + 1 - \frac{2 e^{2 x}}{e^{2 x} + 1}\right) e^{2 x}}{e^{2 x} + 1}$$
The third derivative [src]
  /                           /        2*x          4*x  \                        \     
  |               /      2*x\ |     6*e          6*e     |     /        2*x \     |     
  |               \-1 + e   /*|1 - -------- + -----------|     |     2*e    |  2*x|     
  |                           |         2*x             2|   3*|1 - --------|*e   |     
  |        2*x                |    1 + e      /     2*x\ |     |         2*x|     |     
  |     3*e                   \               \1 + e   / /     \    1 + e   /     |  2*x
8*|1 - -------- - ---------------------------------------- - ---------------------|*e   
  |         2*x                        2*x                               2*x      |     
  \    1 + e                      1 + e                             1 + e         /     
----------------------------------------------------------------------------------------
                                             2*x                                        
                                        1 + e                                           
$$\frac{8 \left(- \frac{3 \left(1 - \frac{2 e^{2 x}}{e^{2 x} + 1}\right) e^{2 x}}{e^{2 x} + 1} - \frac{\left(e^{2 x} - 1\right) \left(1 - \frac{6 e^{2 x}}{e^{2 x} + 1} + \frac{6 e^{4 x}}{\left(e^{2 x} + 1\right)^{2}}\right)}{e^{2 x} + 1} + 1 - \frac{3 e^{2 x}}{e^{2 x} + 1}\right) e^{2 x}}{e^{2 x} + 1}$$