Detail solution
-
Apply the product rule:
; to find :
-
The derivative of is itself.
; to find :
-
The derivative of is .
The result is:
-
Now simplify:
The answer is:
The first derivative
[src]
$$e^{x} \log{\left(x \right)} + \frac{e^{x}}{x}$$
The second derivative
[src]
/ 1 2 \ x
|- -- + - + log(x)|*e
| 2 x |
\ x /
$$\left(\log{\left(x \right)} + \frac{2}{x} - \frac{1}{x^{2}}\right) e^{x}$$
The third derivative
[src]
/ 3 2 3 \ x
|- -- + -- + - + log(x)|*e
| 2 3 x |
\ x x /
$$\left(\log{\left(x \right)} + \frac{3}{x} - \frac{3}{x^{2}} + \frac{2}{x^{3}}\right) e^{x}$$