Mister Exam

Other calculators


e^x*log(sin(x))

Derivative of e^x*log(sin(x))

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
 x            
E *log(sin(x))
$$e^{x} \log{\left(\sin{\left(x \right)} \right)}$$
E^x*log(sin(x))
Detail solution
  1. Apply the product rule:

    ; to find :

    1. The derivative of is itself.

    ; to find :

    1. Let .

    2. The derivative of is .

    3. Then, apply the chain rule. Multiply by :

      1. The derivative of sine is cosine:

      The result of the chain rule is:

    The result is:

  2. Now simplify:


The answer is:

The graph
The first derivative [src]
                         x
 x               cos(x)*e 
e *log(sin(x)) + ---------
                   sin(x) 
$$e^{x} \log{\left(\sin{\left(x \right)} \right)} + \frac{e^{x} \cos{\left(x \right)}}{\sin{\left(x \right)}}$$
The second derivative [src]
/        2                            \   
|     cos (x)   2*cos(x)              |  x
|-1 - ------- + -------- + log(sin(x))|*e 
|        2       sin(x)               |   
\     sin (x)                         /   
$$\left(\log{\left(\sin{\left(x \right)} \right)} - 1 + \frac{2 \cos{\left(x \right)}}{\sin{\left(x \right)}} - \frac{\cos^{2}{\left(x \right)}}{\sin^{2}{\left(x \right)}}\right) e^{x}$$
The third derivative [src]
/                              /       2   \                     \   
|                              |    cos (x)|                     |   
|                            2*|1 + -------|*cos(x)              |   
|          2                   |       2   |                     |   
|     3*cos (x)   3*cos(x)     \    sin (x)/                     |  x
|-3 - --------- + -------- + ---------------------- + log(sin(x))|*e 
|         2        sin(x)            sin(x)                      |   
\      sin (x)                                                   /   
$$\left(\frac{2 \left(1 + \frac{\cos^{2}{\left(x \right)}}{\sin^{2}{\left(x \right)}}\right) \cos{\left(x \right)}}{\sin{\left(x \right)}} + \log{\left(\sin{\left(x \right)} \right)} - 3 + \frac{3 \cos{\left(x \right)}}{\sin{\left(x \right)}} - \frac{3 \cos^{2}{\left(x \right)}}{\sin^{2}{\left(x \right)}}\right) e^{x}$$
The graph
Derivative of e^x*log(sin(x))