x E *log(sin(x))
E^x*log(sin(x))
Apply the product rule:
; to find :
The derivative of is itself.
; to find :
Let .
The derivative of is .
Then, apply the chain rule. Multiply by :
The derivative of sine is cosine:
The result of the chain rule is:
The result is:
Now simplify:
The answer is:
x
x cos(x)*e
e *log(sin(x)) + ---------
sin(x)
/ 2 \ | cos (x) 2*cos(x) | x |-1 - ------- + -------- + log(sin(x))|*e | 2 sin(x) | \ sin (x) /
/ / 2 \ \ | | cos (x)| | | 2*|1 + -------|*cos(x) | | 2 | 2 | | | 3*cos (x) 3*cos(x) \ sin (x)/ | x |-3 - --------- + -------- + ---------------------- + log(sin(x))|*e | 2 sin(x) sin(x) | \ sin (x) /