Mister Exam

Other calculators


e^x/(x^2+1)

Derivative of e^x/(x^2+1)

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
   x  
  E   
------
 2    
x  + 1
$$\frac{e^{x}}{x^{2} + 1}$$
E^x/(x^2 + 1)
Detail solution
  1. Apply the quotient rule, which is:

    and .

    To find :

    1. The derivative of is itself.

    To find :

    1. Differentiate term by term:

      1. The derivative of the constant is zero.

      2. Apply the power rule: goes to

      The result is:

    Now plug in to the quotient rule:

  2. Now simplify:


The answer is:

The graph
The first derivative [src]
   x            x 
  e        2*x*e  
------ - ---------
 2               2
x  + 1   / 2    \ 
         \x  + 1/ 
$$- \frac{2 x e^{x}}{\left(x^{2} + 1\right)^{2}} + \frac{e^{x}}{x^{2} + 1}$$
The second derivative [src]
/               /         2 \\   
|               |      4*x  ||   
|             2*|-1 + ------||   
|               |          2||   
|     4*x       \     1 + x /|  x
|1 - ------ + ---------------|*e 
|         2             2    |   
\    1 + x         1 + x     /   
---------------------------------
                   2             
              1 + x              
$$\frac{\left(- \frac{4 x}{x^{2} + 1} + 1 + \frac{2 \left(\frac{4 x^{2}}{x^{2} + 1} - 1\right)}{x^{2} + 1}\right) e^{x}}{x^{2} + 1}$$
The third derivative [src]
/               /         2 \        /         2 \\   
|               |      4*x  |        |      2*x  ||   
|             6*|-1 + ------|   24*x*|-1 + ------||   
|               |          2|        |          2||   
|     6*x       \     1 + x /        \     1 + x /|  x
|1 - ------ + --------------- - ------------------|*e 
|         2             2                   2     |   
|    1 + x         1 + x            /     2\      |   
\                                   \1 + x /      /   
------------------------------------------------------
                             2                        
                        1 + x                         
$$\frac{\left(- \frac{6 x}{x^{2} + 1} - \frac{24 x \left(\frac{2 x^{2}}{x^{2} + 1} - 1\right)}{\left(x^{2} + 1\right)^{2}} + 1 + \frac{6 \left(\frac{4 x^{2}}{x^{2} + 1} - 1\right)}{x^{2} + 1}\right) e^{x}}{x^{2} + 1}$$
The graph
Derivative of e^x/(x^2+1)