Apply the quotient rule, which is:
and .
To find :
The derivative of is itself.
To find :
Differentiate term by term:
The derivative of the constant is zero.
The derivative of is itself.
The result is:
Now plug in to the quotient rule:
Now simplify:
The answer is:
x 2*x
e e
------ - ---------
x 2
E - 2 / x \
\E - 2/
/ / x \ \
| | 2*e | x|
| |1 - -------|*e |
| x | x| |
| 2*e \ -2 + e / | x
|1 - ------- - ----------------|*e
| x x |
\ -2 + e -2 + e /
-----------------------------------
x
-2 + e
/ / x 2*x \ \
| | 6*e 6*e | x / x \ |
| |1 - ------- + ----------|*e | 2*e | x|
| | x 2| 3*|1 - -------|*e |
| x | -2 + e / x\ | | x| |
| 3*e \ \-2 + e / / \ -2 + e / | x
|1 - ------- - ----------------------------- - ------------------|*e
| x x x |
\ -2 + e -2 + e -2 + e /
---------------------------------------------------------------------
x
-2 + e