Apply the quotient rule, which is:
and .
To find :
The derivative of is itself.
To find :
Differentiate term by term:
The derivative of the constant is zero.
The derivative of is itself.
The result is:
Now plug in to the quotient rule:
Now simplify:
The answer is:
x 2*x e e ------ - --------- x 2 E - 2 / x \ \E - 2/
/ / x \ \ | | 2*e | x| | |1 - -------|*e | | x | x| | | 2*e \ -2 + e / | x |1 - ------- - ----------------|*e | x x | \ -2 + e -2 + e / ----------------------------------- x -2 + e
/ / x 2*x \ \ | | 6*e 6*e | x / x \ | | |1 - ------- + ----------|*e | 2*e | x| | | x 2| 3*|1 - -------|*e | | x | -2 + e / x\ | | x| | | 3*e \ \-2 + e / / \ -2 + e / | x |1 - ------- - ----------------------------- - ------------------|*e | x x x | \ -2 + e -2 + e -2 + e / --------------------------------------------------------------------- x -2 + e