Mister Exam

Other calculators


e^(2*x)sinx

Derivative of e^(2*x)sinx

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
 2*x       
e   *sin(x)
e2xsin(x)e^{2 x} \sin{\left(x \right)}
d / 2*x       \
--\e   *sin(x)/
dx             
ddxe2xsin(x)\frac{d}{d x} e^{2 x} \sin{\left(x \right)}
Detail solution
  1. Apply the product rule:

    ddxf(x)g(x)=f(x)ddxg(x)+g(x)ddxf(x)\frac{d}{d x} f{\left(x \right)} g{\left(x \right)} = f{\left(x \right)} \frac{d}{d x} g{\left(x \right)} + g{\left(x \right)} \frac{d}{d x} f{\left(x \right)}

    f(x)=e2xf{\left(x \right)} = e^{2 x}; to find ddxf(x)\frac{d}{d x} f{\left(x \right)}:

    1. Let u=2xu = 2 x.

    2. The derivative of eue^{u} is itself.

    3. Then, apply the chain rule. Multiply by ddx2x\frac{d}{d x} 2 x:

      1. The derivative of a constant times a function is the constant times the derivative of the function.

        1. Apply the power rule: xx goes to 11

        So, the result is: 22

      The result of the chain rule is:

      2e2x2 e^{2 x}

    g(x)=sin(x)g{\left(x \right)} = \sin{\left(x \right)}; to find ddxg(x)\frac{d}{d x} g{\left(x \right)}:

    1. The derivative of sine is cosine:

      ddxsin(x)=cos(x)\frac{d}{d x} \sin{\left(x \right)} = \cos{\left(x \right)}

    The result is: 2e2xsin(x)+e2xcos(x)2 e^{2 x} \sin{\left(x \right)} + e^{2 x} \cos{\left(x \right)}

  2. Now simplify:

    (2sin(x)+cos(x))e2x\left(2 \sin{\left(x \right)} + \cos{\left(x \right)}\right) e^{2 x}


The answer is:

(2sin(x)+cos(x))e2x\left(2 \sin{\left(x \right)} + \cos{\left(x \right)}\right) e^{2 x}

The graph
02468-8-6-4-2-1010-10000000001000000000
The first derivative [src]
        2*x      2*x       
cos(x)*e    + 2*e   *sin(x)
2e2xsin(x)+e2xcos(x)2 e^{2 x} \sin{\left(x \right)} + e^{2 x} \cos{\left(x \right)}
The second derivative [src]
                       2*x
(3*sin(x) + 4*cos(x))*e   
(3sin(x)+4cos(x))e2x\left(3 \sin{\left(x \right)} + 4 \cos{\left(x \right)}\right) e^{2 x}
The third derivative [src]
                        2*x
(2*sin(x) + 11*cos(x))*e   
(2sin(x)+11cos(x))e2x\left(2 \sin{\left(x \right)} + 11 \cos{\left(x \right)}\right) e^{2 x}
The graph
Derivative of e^(2*x)sinx