Mister Exam

Other calculators

Derivative of e^(3*sin(x)-2x^2)

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
               2
 3*sin(x) - 2*x 
E               
$$e^{- 2 x^{2} + 3 \sin{\left(x \right)}}$$
E^(3*sin(x) - 2*x^2)
Detail solution
  1. Let .

  2. The derivative of is itself.

  3. Then, apply the chain rule. Multiply by :

    1. Differentiate term by term:

      1. The derivative of a constant times a function is the constant times the derivative of the function.

        1. The derivative of sine is cosine:

        So, the result is:

      2. The derivative of a constant times a function is the constant times the derivative of the function.

        1. Apply the power rule: goes to

        So, the result is:

      The result is:

    The result of the chain rule is:

  4. Now simplify:


The answer is:

The graph
The first derivative [src]
                                 2
                   3*sin(x) - 2*x 
(-4*x + 3*cos(x))*e               
$$\left(- 4 x + 3 \cos{\left(x \right)}\right) e^{- 2 x^{2} + 3 \sin{\left(x \right)}}$$
The second derivative [src]
                                           2           
/                      2           \  - 2*x  + 3*sin(x)
\-4 + (-3*cos(x) + 4*x)  - 3*sin(x)/*e                 
$$\left(\left(4 x - 3 \cos{\left(x \right)}\right)^{2} - 3 \sin{\left(x \right)} - 4\right) e^{- 2 x^{2} + 3 \sin{\left(x \right)}}$$
The third derivative [src]
                                                                             2           
/                   3                                                \  - 2*x  + 3*sin(x)
\- (-3*cos(x) + 4*x)  - 3*cos(x) + 3*(4 + 3*sin(x))*(-3*cos(x) + 4*x)/*e                 
$$\left(- \left(4 x - 3 \cos{\left(x \right)}\right)^{3} + 3 \left(4 x - 3 \cos{\left(x \right)}\right) \left(3 \sin{\left(x \right)} + 4\right) - 3 \cos{\left(x \right)}\right) e^{- 2 x^{2} + 3 \sin{\left(x \right)}}$$