__________ \/ cos(2*x) e
/ __________\ d | \/ cos(2*x) | --\e / dx
Let .
The derivative of is itself.
Then, apply the chain rule. Multiply by :
Let .
Apply the power rule: goes to
Then, apply the chain rule. Multiply by :
Let .
The derivative of cosine is negative sine:
Then, apply the chain rule. Multiply by :
The derivative of a constant times a function is the constant times the derivative of the function.
Apply the power rule: goes to
So, the result is:
The result of the chain rule is:
The result of the chain rule is:
The result of the chain rule is:
The answer is:
__________ \/ cos(2*x) -e *sin(2*x) ------------------------ __________ \/ cos(2*x)
/ 2 2 \ __________ | __________ sin (2*x) sin (2*x) | \/ cos(2*x) |- 2*\/ cos(2*x) + --------- - -----------|*e | cos(2*x) 3/2 | \ cos (2*x)/
/ 2 2 2 \ __________ | 2 sin (2*x) 3*sin (2*x) 3*sin (2*x)| \/ cos(2*x) |6 - ------------ - ----------- - ----------- + -----------|*e *sin(2*x) | __________ 3/2 5/2 2 | \ \/ cos(2*x) cos (2*x) cos (2*x) cos (2*x) /