Mister Exam

Derivative of e^(sqrt(cos2x))

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
   __________
 \/ cos(2*x) 
e            
$$e^{\sqrt{\cos{\left(2 x \right)}}}$$
  /   __________\
d | \/ cos(2*x) |
--\e            /
dx               
$$\frac{d}{d x} e^{\sqrt{\cos{\left(2 x \right)}}}$$
Detail solution
  1. Let .

  2. The derivative of is itself.

  3. Then, apply the chain rule. Multiply by :

    1. Let .

    2. Apply the power rule: goes to

    3. Then, apply the chain rule. Multiply by :

      1. Let .

      2. The derivative of cosine is negative sine:

      3. Then, apply the chain rule. Multiply by :

        1. The derivative of a constant times a function is the constant times the derivative of the function.

          1. Apply the power rule: goes to

          So, the result is:

        The result of the chain rule is:

      The result of the chain rule is:

    The result of the chain rule is:


The answer is:

The graph
The first derivative [src]
    __________          
  \/ cos(2*x)           
-e            *sin(2*x) 
------------------------
        __________      
      \/ cos(2*x)       
$$- \frac{e^{\sqrt{\cos{\left(2 x \right)}}} \sin{\left(2 x \right)}}{\sqrt{\cos{\left(2 x \right)}}}$$
The second derivative [src]
/                      2            2      \    __________
|      __________   sin (2*x)    sin (2*x) |  \/ cos(2*x) 
|- 2*\/ cos(2*x)  + --------- - -----------|*e            
|                    cos(2*x)      3/2     |              
\                               cos   (2*x)/              
$$\left(\frac{\sin^{2}{\left(2 x \right)}}{\cos{\left(2 x \right)}} - 2 \sqrt{\cos{\left(2 x \right)}} - \frac{\sin^{2}{\left(2 x \right)}}{\cos^{\frac{3}{2}}{\left(2 x \right)}}\right) e^{\sqrt{\cos{\left(2 x \right)}}}$$
The third derivative [src]
/                       2              2             2     \    __________         
|         2          sin (2*x)    3*sin (2*x)   3*sin (2*x)|  \/ cos(2*x)          
|6 - ------------ - ----------- - ----------- + -----------|*e            *sin(2*x)
|      __________      3/2           5/2            2      |                       
\    \/ cos(2*x)    cos   (2*x)   cos   (2*x)    cos (2*x) /                       
$$\left(\frac{3 \sin^{2}{\left(2 x \right)}}{\cos^{2}{\left(2 x \right)}} + 6 - \frac{\sin^{2}{\left(2 x \right)}}{\cos^{\frac{3}{2}}{\left(2 x \right)}} - \frac{2}{\sqrt{\cos{\left(2 x \right)}}} - \frac{3 \sin^{2}{\left(2 x \right)}}{\cos^{\frac{5}{2}}{\left(2 x \right)}}\right) e^{\sqrt{\cos{\left(2 x \right)}}} \sin{\left(2 x \right)}$$
The graph
Derivative of e^(sqrt(cos2x))