Mister Exam

Derivative of е^sinx*sinx

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
 sin(x)       
E      *sin(x)
$$e^{\sin{\left(x \right)}} \sin{\left(x \right)}$$
E^sin(x)*sin(x)
Detail solution
  1. Apply the product rule:

    ; to find :

    1. Let .

    2. The derivative of is itself.

    3. Then, apply the chain rule. Multiply by :

      1. The derivative of sine is cosine:

      The result of the chain rule is:

    ; to find :

    1. The derivative of sine is cosine:

    The result is:

  2. Now simplify:


The answer is:

The graph
The first derivative [src]
        sin(x)           sin(x)       
cos(x)*e       + cos(x)*e      *sin(x)
$$e^{\sin{\left(x \right)}} \sin{\left(x \right)} \cos{\left(x \right)} + e^{\sin{\left(x \right)}} \cos{\left(x \right)}$$
The second derivative [src]
/               2      /     2            \       \  sin(x)
\-sin(x) + 2*cos (x) - \- cos (x) + sin(x)/*sin(x)/*e      
$$\left(- \left(\sin{\left(x \right)} - \cos^{2}{\left(x \right)}\right) \sin{\left(x \right)} - \sin{\left(x \right)} + 2 \cos^{2}{\left(x \right)}\right) e^{\sin{\left(x \right)}}$$
The third derivative [src]
 /         2                 /       2              \       \         sin(x)
-\1 - 3*cos (x) + 6*sin(x) + \1 - cos (x) + 3*sin(x)/*sin(x)/*cos(x)*e      
$$- \left(\left(3 \sin{\left(x \right)} - \cos^{2}{\left(x \right)} + 1\right) \sin{\left(x \right)} + 6 \sin{\left(x \right)} - 3 \cos^{2}{\left(x \right)} + 1\right) e^{\sin{\left(x \right)}} \cos{\left(x \right)}$$
The graph
Derivative of е^sinx*sinx