Detail solution
-
Apply the product rule:
; to find :
-
Let .
-
The derivative of is itself.
-
Then, apply the chain rule. Multiply by :
-
The derivative of sine is cosine:
The result of the chain rule is:
; to find :
-
Let .
-
Apply the power rule: goes to
-
Then, apply the chain rule. Multiply by :
-
The derivative of cosine is negative sine:
The result of the chain rule is:
The result is:
Now simplify:
The answer is:
The first derivative
[src]
3 sin(x) sin(x)
cos (x)*e - 2*cos(x)*e *sin(x)
$$- 2 e^{\sin{\left(x \right)}} \sin{\left(x \right)} \cos{\left(x \right)} + e^{\sin{\left(x \right)}} \cos^{3}{\left(x \right)}$$
The second derivative
[src]
/ 2 2 2 / 2 \ 2 \ sin(x)
\- 2*cos (x) + 2*sin (x) - cos (x)*\- cos (x) + sin(x)/ - 4*cos (x)*sin(x)/*e
$$\left(- \left(\sin{\left(x \right)} - \cos^{2}{\left(x \right)}\right) \cos^{2}{\left(x \right)} + 2 \sin^{2}{\left(x \right)} - 4 \sin{\left(x \right)} \cos^{2}{\left(x \right)} - 2 \cos^{2}{\left(x \right)}\right) e^{\sin{\left(x \right)}}$$
The third derivative
[src]
/ 2 2 2 / 2 \ / 2 \ \ sin(x)
\- 6*cos (x) + 6*sin (x) + 8*sin(x) - cos (x)*\1 - cos (x) + 3*sin(x)/ + 6*\- cos (x) + sin(x)/*sin(x)/*cos(x)*e
$$\left(6 \left(\sin{\left(x \right)} - \cos^{2}{\left(x \right)}\right) \sin{\left(x \right)} - \left(3 \sin{\left(x \right)} - \cos^{2}{\left(x \right)} + 1\right) \cos^{2}{\left(x \right)} + 6 \sin^{2}{\left(x \right)} + 8 \sin{\left(x \right)} - 6 \cos^{2}{\left(x \right)}\right) e^{\sin{\left(x \right)}} \cos{\left(x \right)}$$