Mister Exam

Other calculators

Derivative of e^(sinx)*cos^2x

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
 sin(x)    2   
E      *cos (x)
$$e^{\sin{\left(x \right)}} \cos^{2}{\left(x \right)}$$
E^sin(x)*cos(x)^2
Detail solution
  1. Apply the product rule:

    ; to find :

    1. Let .

    2. The derivative of is itself.

    3. Then, apply the chain rule. Multiply by :

      1. The derivative of sine is cosine:

      The result of the chain rule is:

    ; to find :

    1. Let .

    2. Apply the power rule: goes to

    3. Then, apply the chain rule. Multiply by :

      1. The derivative of cosine is negative sine:

      The result of the chain rule is:

    The result is:

  2. Now simplify:


The answer is:

The graph
The first derivative [src]
   3     sin(x)             sin(x)       
cos (x)*e       - 2*cos(x)*e      *sin(x)
$$- 2 e^{\sin{\left(x \right)}} \sin{\left(x \right)} \cos{\left(x \right)} + e^{\sin{\left(x \right)}} \cos^{3}{\left(x \right)}$$
The second derivative [src]
/       2           2         2    /     2            \        2          \  sin(x)
\- 2*cos (x) + 2*sin (x) - cos (x)*\- cos (x) + sin(x)/ - 4*cos (x)*sin(x)/*e      
$$\left(- \left(\sin{\left(x \right)} - \cos^{2}{\left(x \right)}\right) \cos^{2}{\left(x \right)} + 2 \sin^{2}{\left(x \right)} - 4 \sin{\left(x \right)} \cos^{2}{\left(x \right)} - 2 \cos^{2}{\left(x \right)}\right) e^{\sin{\left(x \right)}}$$
The third derivative [src]
/       2           2                    2    /       2              \     /     2            \       \         sin(x)
\- 6*cos (x) + 6*sin (x) + 8*sin(x) - cos (x)*\1 - cos (x) + 3*sin(x)/ + 6*\- cos (x) + sin(x)/*sin(x)/*cos(x)*e      
$$\left(6 \left(\sin{\left(x \right)} - \cos^{2}{\left(x \right)}\right) \sin{\left(x \right)} - \left(3 \sin{\left(x \right)} - \cos^{2}{\left(x \right)} + 1\right) \cos^{2}{\left(x \right)} + 6 \sin^{2}{\left(x \right)} + 8 \sin{\left(x \right)} - 6 \cos^{2}{\left(x \right)}\right) e^{\sin{\left(x \right)}} \cos{\left(x \right)}$$