Mister Exam

Other calculators


e^(sin(x)-2*x^2)

Derivative of e^(sin(x)-2*x^2)

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
             2
 sin(x) - 2*x 
E             
$$e^{- 2 x^{2} + \sin{\left(x \right)}}$$
E^(sin(x) - 2*x^2)
Detail solution
  1. Let .

  2. The derivative of is itself.

  3. Then, apply the chain rule. Multiply by :

    1. Differentiate term by term:

      1. The derivative of sine is cosine:

      2. The derivative of a constant times a function is the constant times the derivative of the function.

        1. Apply the power rule: goes to

        So, the result is:

      The result is:

    The result of the chain rule is:

  4. Now simplify:


The answer is:

The graph
The first derivative [src]
                             2
                 sin(x) - 2*x 
(-4*x + cos(x))*e             
$$\left(- 4 x + \cos{\left(x \right)}\right) e^{- 2 x^{2} + \sin{\left(x \right)}}$$
The second derivative [src]
                                       2         
/                    2         \  - 2*x  + sin(x)
\-4 + (-cos(x) + 4*x)  - sin(x)/*e               
$$\left(\left(4 x - \cos{\left(x \right)}\right)^{2} - \sin{\left(x \right)} - 4\right) e^{- 2 x^{2} + \sin{\left(x \right)}}$$
The third derivative [src]
                                                                     2         
/                 3                                          \  - 2*x  + sin(x)
\- (-cos(x) + 4*x)  - cos(x) + 3*(4 + sin(x))*(-cos(x) + 4*x)/*e               
$$\left(- \left(4 x - \cos{\left(x \right)}\right)^{3} + 3 \left(4 x - \cos{\left(x \right)}\right) \left(\sin{\left(x \right)} + 4\right) - \cos{\left(x \right)}\right) e^{- 2 x^{2} + \sin{\left(x \right)}}$$
The graph
Derivative of e^(sin(x)-2*x^2)