Mister Exam

Other calculators

Derivative of е^(7*x+5)^8

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
 /         8\
 \(7*x + 5) /
E            
$$e^{\left(7 x + 5\right)^{8}}$$
E^((7*x + 5)^8)
The first derivative [src]
               /         8\
            7  \(7*x + 5) /
56*(7*x + 5) *e            
$$56 \left(7 x + 5\right)^{7} e^{\left(7 x + 5\right)^{8}}$$
The second derivative [src]
                                   /         8\
             6 /               8\  \(5 + 7*x) /
392*(5 + 7*x) *\7 + 8*(5 + 7*x) /*e            
$$392 \left(7 x + 5\right)^{6} \left(8 \left(7 x + 5\right)^{8} + 7\right) e^{\left(7 x + 5\right)^{8}}$$
The third derivative [src]
                                                       /         8\
              5 /                 16               8\  \(5 + 7*x) /
5488*(5 + 7*x) *\21 + 32*(5 + 7*x)   + 84*(5 + 7*x) /*e            
$$5488 \left(7 x + 5\right)^{5} \left(32 \left(7 x + 5\right)^{16} + 84 \left(7 x + 5\right)^{8} + 21\right) e^{\left(7 x + 5\right)^{8}}$$