Mister Exam

Other calculators


(e^(-x^2)-1)/x

Derivative of (e^(-x^2)-1)/x

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
   2    
 -x     
e    - 1
--------
   x    
$$\frac{\left(-1\right) 1 + e^{- x^{2}}}{x}$$
  /   2    \
  | -x     |
d |e    - 1|
--|--------|
dx\   x    /
$$\frac{d}{d x} \frac{\left(-1\right) 1 + e^{- x^{2}}}{x}$$
Detail solution
  1. Apply the quotient rule, which is:

    and .

    To find :

    1. Differentiate term by term:

      1. The derivative of the constant is zero.

      2. The derivative of a constant times a function is the constant times the derivative of the function.

        1. Let .

        2. The derivative of is itself.

        3. Then, apply the chain rule. Multiply by :

          1. Apply the power rule: goes to

          The result of the chain rule is:

        So, the result is:

      The result is:

    To find :

    1. Apply the product rule:

      ; to find :

      1. Apply the power rule: goes to

      ; to find :

      1. Let .

      2. The derivative of is itself.

      3. Then, apply the chain rule. Multiply by :

        1. Apply the power rule: goes to

        The result of the chain rule is:

      The result is:

    Now plug in to the quotient rule:

  2. Now simplify:


The answer is:

The graph
The first derivative [src]
              2    
       2    -x     
     -x    e    - 1
- 2*e    - --------
               2   
              x    
$$- 2 e^{- x^{2}} - \frac{\left(-1\right) 1 + e^{- x^{2}}}{x^{2}}$$
The second derivative [src]
  /                                   2\
  |     2                  2        -x |
  |   -x    /        2\  -x    1 - e   |
2*|2*e    + \-1 + 2*x /*e    - --------|
  |                                2   |
  \                               x    /
----------------------------------------
                   x                    
$$\frac{2 \left(\left(2 x^{2} - 1\right) e^{- x^{2}} + 2 e^{- x^{2}} - \frac{1 - e^{- x^{2}}}{x^{2}}\right)}{x}$$
The third derivative [src]
  /       2                          /       2\                    2\
  |     -x                     2     |     -x |     /        2\  -x |
  |  6*e        /        2\  -x    3*\1 - e   /   3*\-1 + 2*x /*e   |
2*|- ------ - 2*\-3 + 2*x /*e    + ------------ - ------------------|
  |     2                                4                 2        |
  \    x                                x                 x         /
$$2 \left(- 2 \cdot \left(2 x^{2} - 3\right) e^{- x^{2}} - \frac{3 \cdot \left(2 x^{2} - 1\right) e^{- x^{2}}}{x^{2}} - \frac{6 e^{- x^{2}}}{x^{2}} + \frac{3 \cdot \left(1 - e^{- x^{2}}\right)}{x^{4}}\right)$$
The graph
Derivative of (e^(-x^2)-1)/x