2 -x e - 1 -------- x
/ 2 \ | -x | d |e - 1| --|--------| dx\ x /
Apply the quotient rule, which is:
and .
To find :
Differentiate term by term:
The derivative of the constant is zero.
The derivative of a constant times a function is the constant times the derivative of the function.
Let .
The derivative of is itself.
Then, apply the chain rule. Multiply by :
Apply the power rule: goes to
The result of the chain rule is:
So, the result is:
The result is:
To find :
Apply the product rule:
; to find :
Apply the power rule: goes to
; to find :
Let .
The derivative of is itself.
Then, apply the chain rule. Multiply by :
Apply the power rule: goes to
The result of the chain rule is:
The result is:
Now plug in to the quotient rule:
Now simplify:
The answer is:
2 2 -x -x e - 1 - 2*e - -------- 2 x
/ 2\ | 2 2 -x | | -x / 2\ -x 1 - e | 2*|2*e + \-1 + 2*x /*e - --------| | 2 | \ x / ---------------------------------------- x
/ 2 / 2\ 2\ | -x 2 | -x | / 2\ -x | | 6*e / 2\ -x 3*\1 - e / 3*\-1 + 2*x /*e | 2*|- ------ - 2*\-3 + 2*x /*e + ------------ - ------------------| | 2 4 2 | \ x x x /