Mister Exam

You entered:

e^(-x)/x

What you mean?

Derivative of e^(-x)/x

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
 -x
e  
---
 x 
$$\frac{e^{- x}}{x}$$
  / -x\
d |e  |
--|---|
dx\ x /
$$\frac{d}{d x} \frac{e^{- x}}{x}$$
Detail solution
  1. Apply the quotient rule, which is:

    and .

    To find :

    1. The derivative of the constant is zero.

    To find :

    1. Apply the product rule:

      ; to find :

      1. Apply the power rule: goes to

      ; to find :

      1. The derivative of is itself.

      The result is:

    Now plug in to the quotient rule:

  2. Now simplify:


The answer is:

The graph
The first derivative [src]
   -x    -x
  e     e  
- --- - ---
   x      2
         x 
$$- \frac{e^{- x}}{x} - \frac{e^{- x}}{x^{2}}$$
The second derivative [src]
/    2   2 \  -x
|1 + - + --|*e  
|    x    2|    
\        x /    
----------------
       x        
$$\frac{\left(1 + \frac{2}{x} + \frac{2}{x^{2}}\right) e^{- x}}{x}$$
The third derivative [src]
 /    3   6    6 \  -x 
-|1 + - + -- + --|*e   
 |    x    3    2|     
 \        x    x /     
-----------------------
           x           
$$- \frac{\left(1 + \frac{3}{x} + \frac{6}{x^{2}} + \frac{6}{x^{3}}\right) e^{- x}}{x}$$
The graph
Derivative of e^(-x)/x