Mister Exam

Derivative of e^(-sin(t))

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
 -sin(t)
E       
$$e^{- \sin{\left(t \right)}}$$
E^(-sin(t))
Detail solution
  1. Let .

  2. The derivative of is itself.

  3. Then, apply the chain rule. Multiply by :

    1. The derivative of a constant times a function is the constant times the derivative of the function.

      1. The derivative of sine is cosine:

      So, the result is:

    The result of the chain rule is:


The answer is:

The graph
The first derivative [src]
         -sin(t)
-cos(t)*e       
$$- e^{- \sin{\left(t \right)}} \cos{\left(t \right)}$$
The second derivative [src]
/   2            \  -sin(t)
\cos (t) + sin(t)/*e       
$$\left(\sin{\left(t \right)} + \cos^{2}{\left(t \right)}\right) e^{- \sin{\left(t \right)}}$$
The third derivative [src]
/       2              \         -sin(t)
\1 - cos (t) - 3*sin(t)/*cos(t)*e       
$$\left(- 3 \sin{\left(t \right)} - \cos^{2}{\left(t \right)} + 1\right) e^{- \sin{\left(t \right)}} \cos{\left(t \right)}$$