Detail solution
-
Let .
-
The derivative of is itself.
-
Then, apply the chain rule. Multiply by :
-
The derivative of a constant times a function is the constant times the derivative of the function.
-
The derivative of sine is cosine:
So, the result is:
The result of the chain rule is:
The answer is:
The first derivative
[src]
$$- e^{- \sin{\left(t \right)}} \cos{\left(t \right)}$$
The second derivative
[src]
/ 2 \ -sin(t)
\cos (t) + sin(t)/*e
$$\left(\sin{\left(t \right)} + \cos^{2}{\left(t \right)}\right) e^{- \sin{\left(t \right)}}$$
The third derivative
[src]
/ 2 \ -sin(t)
\1 - cos (t) - 3*sin(t)/*cos(t)*e
$$\left(- 3 \sin{\left(t \right)} - \cos^{2}{\left(t \right)} + 1\right) e^{- \sin{\left(t \right)}} \cos{\left(t \right)}$$