Mister Exam

Other calculators


е^(-lnx^3)^5

Derivative of е^(-lnx^3)^5

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
 /          5\
 |/    3   \ |
 \\-log (x)/ /
e             
e(log(x)3)5e^{\left(- \log{\left(x \right)}^{3}\right)^{5}}
  / /          5\\
  | |/    3   \ ||
d | \\-log (x)/ /|
--\e             /
dx                
ddxe(log(x)3)5\frac{d}{d x} e^{\left(- \log{\left(x \right)}^{3}\right)^{5}}
Detail solution
  1. Let u=(log(x)3)5u = \left(- \log{\left(x \right)}^{3}\right)^{5}.

  2. The derivative of eue^{u} is itself.

  3. Then, apply the chain rule. Multiply by ddx(log(x)3)5\frac{d}{d x} \left(- \log{\left(x \right)}^{3}\right)^{5}:

    1. Let u=log(x)3u = - \log{\left(x \right)}^{3}.

    2. Apply the power rule: u5u^{5} goes to 5u45 u^{4}

    3. Then, apply the chain rule. Multiply by ddx(log(x)3)\frac{d}{d x} \left(- \log{\left(x \right)}^{3}\right):

      1. The derivative of a constant times a function is the constant times the derivative of the function.

        1. Let u=log(x)u = \log{\left(x \right)}.

        2. Apply the power rule: u3u^{3} goes to 3u23 u^{2}

        3. Then, apply the chain rule. Multiply by ddxlog(x)\frac{d}{d x} \log{\left(x \right)}:

          1. The derivative of log(x)\log{\left(x \right)} is 1x\frac{1}{x}.

          The result of the chain rule is:

          3log(x)2x\frac{3 \log{\left(x \right)}^{2}}{x}

        So, the result is: 3log(x)2x- \frac{3 \log{\left(x \right)}^{2}}{x}

      The result of the chain rule is:

      15log(x)14x- \frac{15 \log{\left(x \right)}^{14}}{x}

    The result of the chain rule is:

    15e(log(x)3)5log(x)14x- \frac{15 e^{\left(- \log{\left(x \right)}^{3}\right)^{5}} \log{\left(x \right)}^{14}}{x}

  4. Now simplify:

    15elog(x)15log(x)14x- \frac{15 e^{- \log{\left(x \right)}^{15}} \log{\left(x \right)}^{14}}{x}


The answer is:

15elog(x)15log(x)14x- \frac{15 e^{- \log{\left(x \right)}^{15}} \log{\left(x \right)}^{14}}{x}

The graph
02468-8-6-4-2-1010-10000000001000000000
The first derivative [src]
              /          5\
              |/    3   \ |
       14     \\-log (x)/ /
-15*log  (x)*e             
---------------------------
             x             
15e(log(x)3)5log(x)14x- \frac{15 e^{\left(- \log{\left(x \right)}^{3}\right)^{5}} \log{\left(x \right)}^{14}}{x}
The second derivative [src]
                                          /          5\
                                          |/    3   \ |
      13    /            15            \  \\-log (x)/ /
15*log  (x)*\-14 + 15*log  (x) + log(x)/*e             
-------------------------------------------------------
                            2                          
                           x                           
15(15log(x)15+log(x)14)e(log(x)3)5log(x)13x2\frac{15 \cdot \left(15 \log{\left(x \right)}^{15} + \log{\left(x \right)} - 14\right) e^{\left(- \log{\left(x \right)}^{3}\right)^{5}} \log{\left(x \right)}^{13}}{x^{2}}
The third derivative [src]
                                                                                        /          5\
                                                                                        |/    3   \ |
      12    /              30            16           2                         15   \  \\-log (x)/ /
15*log  (x)*\-182 - 225*log  (x) - 45*log  (x) - 2*log (x) + 42*log(x) + 630*log  (x)/*e             
-----------------------------------------------------------------------------------------------------
                                                   3                                                 
                                                  x                                                  
15(225log(x)3045log(x)16+630log(x)152log(x)2+42log(x)182)e(log(x)3)5log(x)12x3\frac{15 \left(- 225 \log{\left(x \right)}^{30} - 45 \log{\left(x \right)}^{16} + 630 \log{\left(x \right)}^{15} - 2 \log{\left(x \right)}^{2} + 42 \log{\left(x \right)} - 182\right) e^{\left(- \log{\left(x \right)}^{3}\right)^{5}} \log{\left(x \right)}^{12}}{x^{3}}
The graph
Derivative of е^(-lnx^3)^5