Mister Exam

Other calculators

Derivative of [e^(-2x)]sqrt(4x-1)

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
 -2*x   _________
E    *\/ 4*x - 1 
e2x4x1e^{- 2 x} \sqrt{4 x - 1}
E^(-2*x)*sqrt(4*x - 1)
Detail solution
  1. Apply the quotient rule, which is:

    ddxf(x)g(x)=f(x)ddxg(x)+g(x)ddxf(x)g2(x)\frac{d}{d x} \frac{f{\left(x \right)}}{g{\left(x \right)}} = \frac{- f{\left(x \right)} \frac{d}{d x} g{\left(x \right)} + g{\left(x \right)} \frac{d}{d x} f{\left(x \right)}}{g^{2}{\left(x \right)}}

    f(x)=4x1f{\left(x \right)} = \sqrt{4 x - 1} and g(x)=e2xg{\left(x \right)} = e^{2 x}.

    To find ddxf(x)\frac{d}{d x} f{\left(x \right)}:

    1. Let u=4x1u = 4 x - 1.

    2. Apply the power rule: u\sqrt{u} goes to 12u\frac{1}{2 \sqrt{u}}

    3. Then, apply the chain rule. Multiply by ddx(4x1)\frac{d}{d x} \left(4 x - 1\right):

      1. Differentiate 4x14 x - 1 term by term:

        1. The derivative of the constant 1-1 is zero.

        2. The derivative of a constant times a function is the constant times the derivative of the function.

          1. Apply the power rule: xx goes to 11

          So, the result is: 44

        The result is: 44

      The result of the chain rule is:

      24x1\frac{2}{\sqrt{4 x - 1}}

    To find ddxg(x)\frac{d}{d x} g{\left(x \right)}:

    1. Let u=2xu = 2 x.

    2. The derivative of eue^{u} is itself.

    3. Then, apply the chain rule. Multiply by ddx2x\frac{d}{d x} 2 x:

      1. The derivative of a constant times a function is the constant times the derivative of the function.

        1. Apply the power rule: xx goes to 11

        So, the result is: 22

      The result of the chain rule is:

      2e2x2 e^{2 x}

    Now plug in to the quotient rule:

    (24x1e2x+2e2x4x1)e4x\left(- 2 \sqrt{4 x - 1} e^{2 x} + \frac{2 e^{2 x}}{\sqrt{4 x - 1}}\right) e^{- 4 x}

  2. Now simplify:

    4(12x)e2x4x1\frac{4 \left(1 - 2 x\right) e^{- 2 x}}{\sqrt{4 x - 1}}


The answer is:

4(12x)e2x4x1\frac{4 \left(1 - 2 x\right) e^{- 2 x}}{\sqrt{4 x - 1}}

The graph
02468-8-6-4-2-10102.5-2.5
The first derivative [src]
                             -2*x  
      _________  -2*x     2*e      
- 2*\/ 4*x - 1 *e     + -----------
                          _________
                        \/ 4*x - 1 
24x1e2x+2e2x4x1- 2 \sqrt{4 x - 1} e^{- 2 x} + \frac{2 e^{- 2 x}}{\sqrt{4 x - 1}}
The second derivative [src]
  /  __________         1              2      \  -2*x
4*|\/ -1 + 4*x  - ------------- - ------------|*e    
  |                         3/2     __________|      
  \               (-1 + 4*x)      \/ -1 + 4*x /      
4(4x124x11(4x1)32)e2x4 \left(\sqrt{4 x - 1} - \frac{2}{\sqrt{4 x - 1}} - \frac{1}{\left(4 x - 1\right)^{\frac{3}{2}}}\right) e^{- 2 x}
The third derivative [src]
  /    __________         3               3              3      \  -2*x
8*|- \/ -1 + 4*x  + ------------- + ------------- + ------------|*e    
  |                           5/2             3/2     __________|      
  \                 (-1 + 4*x)      (-1 + 4*x)      \/ -1 + 4*x /      
8(4x1+34x1+3(4x1)32+3(4x1)52)e2x8 \left(- \sqrt{4 x - 1} + \frac{3}{\sqrt{4 x - 1}} + \frac{3}{\left(4 x - 1\right)^{\frac{3}{2}}} + \frac{3}{\left(4 x - 1\right)^{\frac{5}{2}}}\right) e^{- 2 x}