Mister Exam

Other calculators

Derivative of [e^(-2x)]sqrt(4x-1)

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
 -2*x   _________
E    *\/ 4*x - 1 
$$e^{- 2 x} \sqrt{4 x - 1}$$
E^(-2*x)*sqrt(4*x - 1)
Detail solution
  1. Apply the quotient rule, which is:

    and .

    To find :

    1. Let .

    2. Apply the power rule: goes to

    3. Then, apply the chain rule. Multiply by :

      1. Differentiate term by term:

        1. The derivative of the constant is zero.

        2. The derivative of a constant times a function is the constant times the derivative of the function.

          1. Apply the power rule: goes to

          So, the result is:

        The result is:

      The result of the chain rule is:

    To find :

    1. Let .

    2. The derivative of is itself.

    3. Then, apply the chain rule. Multiply by :

      1. The derivative of a constant times a function is the constant times the derivative of the function.

        1. Apply the power rule: goes to

        So, the result is:

      The result of the chain rule is:

    Now plug in to the quotient rule:

  2. Now simplify:


The answer is:

The graph
The first derivative [src]
                             -2*x  
      _________  -2*x     2*e      
- 2*\/ 4*x - 1 *e     + -----------
                          _________
                        \/ 4*x - 1 
$$- 2 \sqrt{4 x - 1} e^{- 2 x} + \frac{2 e^{- 2 x}}{\sqrt{4 x - 1}}$$
The second derivative [src]
  /  __________         1              2      \  -2*x
4*|\/ -1 + 4*x  - ------------- - ------------|*e    
  |                         3/2     __________|      
  \               (-1 + 4*x)      \/ -1 + 4*x /      
$$4 \left(\sqrt{4 x - 1} - \frac{2}{\sqrt{4 x - 1}} - \frac{1}{\left(4 x - 1\right)^{\frac{3}{2}}}\right) e^{- 2 x}$$
The third derivative [src]
  /    __________         3               3              3      \  -2*x
8*|- \/ -1 + 4*x  + ------------- + ------------- + ------------|*e    
  |                           5/2             3/2     __________|      
  \                 (-1 + 4*x)      (-1 + 4*x)      \/ -1 + 4*x /      
$$8 \left(- \sqrt{4 x - 1} + \frac{3}{\sqrt{4 x - 1}} + \frac{3}{\left(4 x - 1\right)^{\frac{3}{2}}} + \frac{3}{\left(4 x - 1\right)^{\frac{5}{2}}}\right) e^{- 2 x}$$