Detail solution
-
Let .
-
Apply the power rule: goes to
-
Then, apply the chain rule. Multiply by :
-
Differentiate term by term:
-
Let .
-
The derivative of is itself.
-
Then, apply the chain rule. Multiply by :
-
The derivative of cosine is negative sine:
The result of the chain rule is:
-
The derivative of the constant is zero.
The result is:
The result of the chain rule is:
Now simplify:
The answer is:
The first derivative
[src]
/ cos(x) \ cos(x)
-2*\e + 2/*e *sin(x)
$$- 2 \left(e^{\cos{\left(x \right)}} + 2\right) e^{\cos{\left(x \right)}} \sin{\left(x \right)}$$
The second derivative
[src]
/ 2 / cos(x)\ 2 cos(x) / cos(x)\ \ cos(x)
2*\sin (x)*\2 + e / + sin (x)*e - \2 + e /*cos(x)/*e
$$2 \left(\left(e^{\cos{\left(x \right)}} + 2\right) \sin^{2}{\left(x \right)} + e^{\cos{\left(x \right)}} \sin^{2}{\left(x \right)} - \left(e^{\cos{\left(x \right)}} + 2\right) \cos{\left(x \right)}\right) e^{\cos{\left(x \right)}}$$
The third derivative
[src]
/ 2 / cos(x)\ 2 cos(x) / cos(x)\ cos(x) cos(x)\ cos(x)
2*\2 - sin (x)*\2 + e / - 3*sin (x)*e + 3*\2 + e /*cos(x) + 3*cos(x)*e + e /*e *sin(x)
$$2 \left(- \left(e^{\cos{\left(x \right)}} + 2\right) \sin^{2}{\left(x \right)} - 3 e^{\cos{\left(x \right)}} \sin^{2}{\left(x \right)} + 3 \left(e^{\cos{\left(x \right)}} + 2\right) \cos{\left(x \right)} + 3 e^{\cos{\left(x \right)}} \cos{\left(x \right)} + e^{\cos{\left(x \right)}} + 2\right) e^{\cos{\left(x \right)}} \sin{\left(x \right)}$$