The second derivative
[src]
/ __________\
/ 1 1 1 \ atan\\/ -1 + 4*x /
|- ------------- - ---------------- + --------------|*e
| 3/2 __________ 4*x*(-1 + 4*x)|
\ (-1 + 4*x) 2*x*\/ -1 + 4*x /
-------------------------------------------------------------------------
x
$$\frac{\left(- \frac{1}{\left(4 x - 1\right)^{\frac{3}{2}}} + \frac{1}{4 x \left(4 x - 1\right)} - \frac{1}{2 x \sqrt{4 x - 1}}\right) e^{\operatorname{atan}{\left(\sqrt{4 x - 1} \right)}}}{x}$$
The third derivative
[src]
/ __________\
/ 6 1 2 3 3 1 \ atan\\/ -1 + 4*x /
|------------- + --------------- + --------------- - --------------- - --------------- + ------------------|*e
| 5/2 2 __________ 3/2 2 2 2 3/2|
\(-1 + 4*x) x *\/ -1 + 4*x x*(-1 + 4*x) 2*x*(-1 + 4*x) 4*x *(-1 + 4*x) 8*x *(-1 + 4*x) /
--------------------------------------------------------------------------------------------------------------------------------
x
$$\frac{\left(\frac{6}{\left(4 x - 1\right)^{\frac{5}{2}}} - \frac{3}{2 x \left(4 x - 1\right)^{2}} + \frac{2}{x \left(4 x - 1\right)^{\frac{3}{2}}} - \frac{3}{4 x^{2} \left(4 x - 1\right)} + \frac{1}{x^{2} \sqrt{4 x - 1}} + \frac{1}{8 x^{2} \left(4 x - 1\right)^{\frac{3}{2}}}\right) e^{\operatorname{atan}{\left(\sqrt{4 x - 1} \right)}}}{x}$$