Mister Exam

Other calculators


e^((7x-1)/5)

Derivative of e^((7x-1)/5)

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
 7*x - 1
 -------
    5   
e       
e7x15e^{\frac{7 x - 1}{5}}
  / 7*x - 1\
  | -------|
d |    5   |
--\e       /
dx          
ddxe7x15\frac{d}{d x} e^{\frac{7 x - 1}{5}}
Detail solution
  1. Let u=7x15u = \frac{7 x - 1}{5}.

  2. The derivative of eue^{u} is itself.

  3. Then, apply the chain rule. Multiply by ddx7x15\frac{d}{d x} \frac{7 x - 1}{5}:

    1. The derivative of a constant times a function is the constant times the derivative of the function.

      1. Differentiate 7x17 x - 1 term by term:

        1. The derivative of a constant times a function is the constant times the derivative of the function.

          1. Apply the power rule: xx goes to 11

          So, the result is: 77

        2. The derivative of the constant (1)1\left(-1\right) 1 is zero.

        The result is: 77

      So, the result is: 75\frac{7}{5}

    The result of the chain rule is:

    7e7x155\frac{7 e^{\frac{7 x - 1}{5}}}{5}

  4. Now simplify:

    7e7x5155\frac{7 e^{\frac{7 x}{5} - \frac{1}{5}}}{5}


The answer is:

7e7x5155\frac{7 e^{\frac{7 x}{5} - \frac{1}{5}}}{5}

The graph
02468-8-6-4-2-101002000000
The first derivative [src]
   7*x - 1
   -------
      5   
7*e       
----------
    5     
7e7x155\frac{7 e^{\frac{7 x - 1}{5}}}{5}
The second derivative [src]
      1   7*x
    - - + ---
      5    5 
49*e         
-------------
      25     
49e7x51525\frac{49 e^{\frac{7 x}{5} - \frac{1}{5}}}{25}
The third derivative [src]
       1   7*x
     - - + ---
       5    5 
343*e         
--------------
     125      
343e7x515125\frac{343 e^{\frac{7 x}{5} - \frac{1}{5}}}{125}
20-th derivative [src]
                     1   7*x
                   - - + ---
                     5    5 
79792266297612001*e         
----------------------------
       95367431640625       
79792266297612001e7x51595367431640625\frac{79792266297612001 e^{\frac{7 x}{5} - \frac{1}{5}}}{95367431640625}
The graph
Derivative of e^((7x-1)/5)