Mister Exam

Other calculators

Derivative of e*exp(x*loge(x-1))

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
   x*log(x - 1)
   ------------
        / 1\   
     log\e /   
E*e            
$$e e^{\frac{x \log{\left(x - 1 \right)}}{\log{\left(e^{1} \right)}}}$$
E*exp((x*log(x - 1))/log(exp(1)))
Detail solution
  1. The derivative of a constant times a function is the constant times the derivative of the function.

    1. Let .

    2. The derivative of is itself.

    3. Then, apply the chain rule. Multiply by :

      1. The derivative of a constant times a function is the constant times the derivative of the function.

        1. Apply the product rule:

          ; to find :

          1. Apply the power rule: goes to

          ; to find :

          1. Let .

          2. The derivative of is .

          3. Then, apply the chain rule. Multiply by :

            1. Differentiate term by term:

              1. Apply the power rule: goes to

              2. The derivative of the constant is zero.

              The result is:

            The result of the chain rule is:

          The result is:

        So, the result is:

      The result of the chain rule is:

    So, the result is:

  2. Now simplify:


The answer is:

The graph
The first derivative [src]
                        x*log(x - 1)
                        ------------
                             / 1\   
  /  x               \    log\e /   
E*|----- + log(x - 1)|*e            
  \x - 1             /              
------------------------------------
                 / 1\               
              log\e /               
$$\frac{e \left(\frac{x}{x - 1} + \log{\left(x - 1 \right)}\right) e^{\frac{x \log{\left(x - 1 \right)}}{\log{\left(e^{1} \right)}}}}{\log{\left(e^{1} \right)}}$$
The second derivative [src]
  /                      2              \  x*log(-1 + x)
  |/  x                 \           x   |  -------------
  ||------ + log(-1 + x)|    -2 + ------|        / 1\   
  |\-1 + x              /         -1 + x|     log\e /   
E*|----------------------- - -----------|*e             
  |           / 1\              -1 + x  |               
  \        log\e /                      /               
--------------------------------------------------------
                           / 1\                         
                        log\e /                         
$$\frac{e \left(\frac{\left(\frac{x}{x - 1} + \log{\left(x - 1 \right)}\right)^{2}}{\log{\left(e^{1} \right)}} - \frac{\frac{x}{x - 1} - 2}{x - 1}\right) e^{\frac{x \log{\left(x - 1 \right)}}{\log{\left(e^{1} \right)}}}}{\log{\left(e^{1} \right)}}$$
The third derivative [src]
  /                                    3                                         \  x*log(-1 + x)
  |      2*x     /  x                 \      /       x   \ /  x                 \|  -------------
  |-3 + ------   |------ + log(-1 + x)|    3*|-2 + ------|*|------ + log(-1 + x)||        / 1\   
  |     -1 + x   \-1 + x              /      \     -1 + x/ \-1 + x              /|     log\e /   
E*|----------- + ----------------------- - --------------------------------------|*e             
  |         2               2/ 1\                                 / 1\           |               
  \ (-1 + x)             log \e /                     (-1 + x)*log\e /           /               
-------------------------------------------------------------------------------------------------
                                                / 1\                                             
                                             log\e /                                             
$$\frac{e \left(\frac{\left(\frac{x}{x - 1} + \log{\left(x - 1 \right)}\right)^{3}}{\log{\left(e^{1} \right)}^{2}} - \frac{3 \left(\frac{x}{x - 1} - 2\right) \left(\frac{x}{x - 1} + \log{\left(x - 1 \right)}\right)}{\left(x - 1\right) \log{\left(e^{1} \right)}} + \frac{\frac{2 x}{x - 1} - 3}{\left(x - 1\right)^{2}}\right) e^{\frac{x \log{\left(x - 1 \right)}}{\log{\left(e^{1} \right)}}}}{\log{\left(e^{1} \right)}}$$