x*log(x - 1)
------------
/ 1\
log\e /
E*e
E*exp((x*log(x - 1))/log(exp(1)))
The derivative of a constant times a function is the constant times the derivative of the function.
Let .
The derivative of is itself.
Then, apply the chain rule. Multiply by :
The derivative of a constant times a function is the constant times the derivative of the function.
Apply the product rule:
; to find :
Apply the power rule: goes to
; to find :
Let .
The derivative of is .
Then, apply the chain rule. Multiply by :
Differentiate term by term:
Apply the power rule: goes to
The derivative of the constant is zero.
The result is:
The result of the chain rule is:
The result is:
So, the result is:
The result of the chain rule is:
So, the result is:
Now simplify:
The answer is:
x*log(x - 1)
------------
/ 1\
/ x \ log\e /
E*|----- + log(x - 1)|*e
\x - 1 /
------------------------------------
/ 1\
log\e /
/ 2 \ x*log(-1 + x)
|/ x \ x | -------------
||------ + log(-1 + x)| -2 + ------| / 1\
|\-1 + x / -1 + x| log\e /
E*|----------------------- - -----------|*e
| / 1\ -1 + x |
\ log\e / /
--------------------------------------------------------
/ 1\
log\e /
/ 3 \ x*log(-1 + x)
| 2*x / x \ / x \ / x \| -------------
|-3 + ------ |------ + log(-1 + x)| 3*|-2 + ------|*|------ + log(-1 + x)|| / 1\
| -1 + x \-1 + x / \ -1 + x/ \-1 + x /| log\e /
E*|----------- + ----------------------- - --------------------------------------|*e
| 2 2/ 1\ / 1\ |
\ (-1 + x) log \e / (-1 + x)*log\e / /
-------------------------------------------------------------------------------------------------
/ 1\
log\e /