_______________ 3 / 3 2 \/ x + 3*x - 1
(x^3 + 3*x^2 - 1)^(1/3)
Let .
Apply the power rule: goes to
Then, apply the chain rule. Multiply by :
Differentiate term by term:
Differentiate term by term:
Apply the power rule: goes to
The derivative of a constant times a function is the constant times the derivative of the function.
Apply the power rule: goes to
So, the result is:
The result is:
The derivative of the constant is zero.
The result is:
The result of the chain rule is:
Now simplify:
The answer is:
2
x + 2*x
------------------
2/3
/ 3 2 \
\x + 3*x - 1/
/ 2 2 \
| x *(2 + x) |
2*|1 + x - --------------|
| 3 2|
\ -1 + x + 3*x /
--------------------------
2/3
/ 3 2\
\-1 + x + 3*x /
/ 3 3 \
| 5*x *(2 + x) 6*x*(1 + x)*(2 + x)|
2*|1 + ----------------- - -------------------|
| 2 3 2 |
| / 3 2\ -1 + x + 3*x |
\ \-1 + x + 3*x / /
-----------------------------------------------
2/3
/ 3 2\
\-1 + x + 3*x /