Mister Exam

Other calculators

Derivative of cbrt(x^3+3*x^2-1)

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
   _______________
3 /  3      2     
\/  x  + 3*x  - 1 
$$\sqrt[3]{\left(x^{3} + 3 x^{2}\right) - 1}$$
(x^3 + 3*x^2 - 1)^(1/3)
Detail solution
  1. Let .

  2. Apply the power rule: goes to

  3. Then, apply the chain rule. Multiply by :

    1. Differentiate term by term:

      1. Differentiate term by term:

        1. Apply the power rule: goes to

        2. The derivative of a constant times a function is the constant times the derivative of the function.

          1. Apply the power rule: goes to

          So, the result is:

        The result is:

      2. The derivative of the constant is zero.

      The result is:

    The result of the chain rule is:

  4. Now simplify:


The answer is:

The graph
The first derivative [src]
      2           
     x  + 2*x     
------------------
               2/3
/ 3      2    \   
\x  + 3*x  - 1/   
$$\frac{x^{2} + 2 x}{\left(\left(x^{3} + 3 x^{2}\right) - 1\right)^{\frac{2}{3}}}$$
The second derivative [src]
  /          2        2  \
  |         x *(2 + x)   |
2*|1 + x - --------------|
  |              3      2|
  \        -1 + x  + 3*x /
--------------------------
                   2/3    
   /      3      2\       
   \-1 + x  + 3*x /       
$$\frac{2 \left(- \frac{x^{2} \left(x + 2\right)^{2}}{x^{3} + 3 x^{2} - 1} + x + 1\right)}{\left(x^{3} + 3 x^{2} - 1\right)^{\frac{2}{3}}}$$
The third derivative [src]
  /         3        3                        \
  |      5*x *(2 + x)      6*x*(1 + x)*(2 + x)|
2*|1 + ----------------- - -------------------|
  |                    2            3      2  |
  |    /      3      2\       -1 + x  + 3*x   |
  \    \-1 + x  + 3*x /                       /
-----------------------------------------------
                              2/3              
              /      3      2\                 
              \-1 + x  + 3*x /                 
$$\frac{2 \left(\frac{5 x^{3} \left(x + 2\right)^{3}}{\left(x^{3} + 3 x^{2} - 1\right)^{2}} - \frac{6 x \left(x + 1\right) \left(x + 2\right)}{x^{3} + 3 x^{2} - 1} + 1\right)}{\left(x^{3} + 3 x^{2} - 1\right)^{\frac{2}{3}}}$$