Mister Exam

Other calculators

Derivative of cbrt((x^3+1)/(3x-2))

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
     _________
    /   3     
   /   x  + 1 
3 /   ------- 
\/    3*x - 2 
$$\sqrt[3]{\frac{x^{3} + 1}{3 x - 2}}$$
((x^3 + 1)/(3*x - 2))^(1/3)
Detail solution
  1. Let .

  2. Apply the power rule: goes to

  3. Then, apply the chain rule. Multiply by :

    1. Apply the quotient rule, which is:

      and .

      To find :

      1. Differentiate term by term:

        1. The derivative of the constant is zero.

        2. Apply the power rule: goes to

        The result is:

      To find :

      1. Differentiate term by term:

        1. The derivative of the constant is zero.

        2. The derivative of a constant times a function is the constant times the derivative of the function.

          1. Apply the power rule: goes to

          So, the result is:

        The result is:

      Now plug in to the quotient rule:

    The result of the chain rule is:

  4. Now simplify:


The answer is:

The graph
The first derivative [src]
     _________                                 
    /   3                /    2        3      \
   /   x  + 1            |   x        x  + 1  |
3 /   ------- *(3*x - 2)*|------- - ----------|
\/    3*x - 2            |3*x - 2            2|
                         \          (3*x - 2) /
-----------------------------------------------
                      3                        
                     x  + 1                    
$$\frac{\sqrt[3]{\frac{x^{3} + 1}{3 x - 2}} \left(3 x - 2\right) \left(\frac{x^{2}}{3 x - 2} - \frac{x^{3} + 1}{\left(3 x - 2\right)^{2}}\right)}{x^{3} + 1}$$
The second derivative [src]
                /                     2                                                                    \
                |      /           3 \                 /           3 \                      /           3 \|
     __________ |      | 2    1 + x  |                 | 2    1 + x  |                    2 | 2    1 + x  ||
    /       3   |      |x  - --------|         2     3*|x  - --------|      /     3\   3*x *|x  - --------||
   /   1 + x    |      \     -2 + 3*x/      6*x        \     -2 + 3*x/    6*\1 + x /        \     -2 + 3*x/|
3 /   -------- *|2*x + ---------------- - -------- + ----------------- + ----------- - --------------------|
\/    -2 + 3*x  |                3        -2 + 3*x        -2 + 3*x                 2               3       |
                \           1 + x                                        (-2 + 3*x)           1 + x        /
------------------------------------------------------------------------------------------------------------
                                                        3                                                   
                                                   1 + x                                                    
$$\frac{\sqrt[3]{\frac{x^{3} + 1}{3 x - 2}} \left(- \frac{3 x^{2} \left(x^{2} - \frac{x^{3} + 1}{3 x - 2}\right)}{x^{3} + 1} - \frac{6 x^{2}}{3 x - 2} + 2 x + \frac{\left(x^{2} - \frac{x^{3} + 1}{3 x - 2}\right)^{2}}{x^{3} + 1} + \frac{3 \left(x^{2} - \frac{x^{3} + 1}{3 x - 2}\right)}{3 x - 2} + \frac{6 \left(x^{3} + 1\right)}{\left(3 x - 2\right)^{2}}\right)}{x^{3} + 1}$$
The third derivative [src]
                /                   3                               /         2        /     3\\                       /         2        /     3\\                       2                           /           3 \ /         2        /     3\\                     2                                                \
                |    /           3 \                                |      3*x       3*\1 + x /|                     2 |      3*x       3*\1 + x /|        /           3 \        /           3 \     | 2    1 + x  | |      3*x       3*\1 + x /|      /           3 \          /           3 \         /           3 \|
     __________ |    | 2    1 + x  |                             12*|x - -------- + -----------|                 12*x *|x - -------- + -----------|      2 | 2    1 + x  |        | 2    1 + x  |   6*|x  - --------|*|x - -------- + -----------|      | 2    1 + x  |        4 | 2    1 + x  |       2 | 2    1 + x  ||
    /       3   |    |x  - --------|       /     3\                 |    -2 + 3*x             2|          2            |    -2 + 3*x             2|   9*x *|x  - --------|    6*x*|x  - --------|     \     -2 + 3*x/ |    -2 + 3*x             2|    9*|x  - --------|    18*x *|x  - --------|   18*x *|x  - --------||
   /   1 + x    |    \     -2 + 3*x/    54*\1 + x /     18*x        \               (-2 + 3*x) /      54*x             \               (-2 + 3*x) /        \     -2 + 3*x/        \     -2 + 3*x/                     \               (-2 + 3*x) /      \     -2 + 3*x/          \     -2 + 3*x/         \     -2 + 3*x/|
3 /   -------- *|2 + ---------------- - ----------- - -------- + ------------------------------- + ----------- - ---------------------------------- - --------------------- - ------------------- + ---------------------------------------------- + ------------------- + --------------------- - ---------------------|
\/    -2 + 3*x  |               2                 3   -2 + 3*x               -2 + 3*x                        2                      3                               2                     3                                  3                       /     3\                            2          /     3\            |
                |       /     3\        (-2 + 3*x)                                                 (-2 + 3*x)                  1 + x                        /     3\                 1 + x                              1 + x                        \1 + x /*(-2 + 3*x)         /     3\           \1 + x /*(-2 + 3*x) |
                \       \1 + x /                                                                                                                            \1 + x /                                                                                                             \1 + x /                               /
-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
                                                                                                                                                               3                                                                                                                                                         
                                                                                                                                                          1 + x                                                                                                                                                          
$$\frac{\sqrt[3]{\frac{x^{3} + 1}{3 x - 2}} \left(\frac{18 x^{4} \left(x^{2} - \frac{x^{3} + 1}{3 x - 2}\right)}{\left(x^{3} + 1\right)^{2}} - \frac{9 x^{2} \left(x^{2} - \frac{x^{3} + 1}{3 x - 2}\right)^{2}}{\left(x^{3} + 1\right)^{2}} - \frac{12 x^{2} \left(- \frac{3 x^{2}}{3 x - 2} + x + \frac{3 \left(x^{3} + 1\right)}{\left(3 x - 2\right)^{2}}\right)}{x^{3} + 1} - \frac{18 x^{2} \left(x^{2} - \frac{x^{3} + 1}{3 x - 2}\right)}{\left(3 x - 2\right) \left(x^{3} + 1\right)} + \frac{54 x^{2}}{\left(3 x - 2\right)^{2}} - \frac{6 x \left(x^{2} - \frac{x^{3} + 1}{3 x - 2}\right)}{x^{3} + 1} - \frac{18 x}{3 x - 2} + \frac{\left(x^{2} - \frac{x^{3} + 1}{3 x - 2}\right)^{3}}{\left(x^{3} + 1\right)^{2}} + \frac{6 \left(x^{2} - \frac{x^{3} + 1}{3 x - 2}\right) \left(- \frac{3 x^{2}}{3 x - 2} + x + \frac{3 \left(x^{3} + 1\right)}{\left(3 x - 2\right)^{2}}\right)}{x^{3} + 1} + 2 + \frac{9 \left(x^{2} - \frac{x^{3} + 1}{3 x - 2}\right)^{2}}{\left(3 x - 2\right) \left(x^{3} + 1\right)} + \frac{12 \left(- \frac{3 x^{2}}{3 x - 2} + x + \frac{3 \left(x^{3} + 1\right)}{\left(3 x - 2\right)^{2}}\right)}{3 x - 2} - \frac{54 \left(x^{3} + 1\right)}{\left(3 x - 2\right)^{3}}\right)}{x^{3} + 1}$$