Mister Exam

Other calculators

Derivative of cbrt(x)/(1+ln^2(x))

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
   3 ___   
   \/ x    
-----------
       2   
1 + log (x)
$$\frac{\sqrt[3]{x}}{\log{\left(x \right)}^{2} + 1}$$
x^(1/3)/(1 + log(x)^2)
Detail solution
  1. Apply the quotient rule, which is:

    and .

    To find :

    1. Apply the power rule: goes to

    To find :

    1. Differentiate term by term:

      1. The derivative of the constant is zero.

      2. Let .

      3. Apply the power rule: goes to

      4. Then, apply the chain rule. Multiply by :

        1. The derivative of is .

        The result of the chain rule is:

      The result is:

    Now plug in to the quotient rule:

  2. Now simplify:


The answer is:

The graph
The first derivative [src]
         1                   2*log(x)     
-------------------- - -------------------
   2/3 /       2   \                     2
3*x   *\1 + log (x)/    2/3 /       2   \ 
                       x   *\1 + log (x)/ 
$$\frac{1}{3 x^{\frac{2}{3}} \left(\log{\left(x \right)}^{2} + 1\right)} - \frac{2 \log{\left(x \right)}}{x^{\frac{2}{3}} \left(\log{\left(x \right)}^{2} + 1\right)^{2}}$$
The second derivative [src]
  /                 2                               \
  |            4*log (x)                            |
  |      -1 + ----------- + log(x)                  |
  |                  2                              |
  |  1        1 + log (x)                2*log(x)   |
2*|- - + ------------------------- - ---------------|
  |  9                 2               /       2   \|
  \             1 + log (x)          3*\1 + log (x)//
-----------------------------------------------------
                   5/3 /       2   \                 
                  x   *\1 + log (x)/                 
$$\frac{2 \left(- \frac{1}{9} + \frac{\log{\left(x \right)} - 1 + \frac{4 \log{\left(x \right)}^{2}}{\log{\left(x \right)}^{2} + 1}}{\log{\left(x \right)}^{2} + 1} - \frac{2 \log{\left(x \right)}}{3 \left(\log{\left(x \right)}^{2} + 1\right)}\right)}{x^{\frac{5}{3}} \left(\log{\left(x \right)}^{2} + 1\right)}$$
The third derivative [src]
  /                                                                      2              3                       \
  |                2                                 12*log(x)     12*log (x)     24*log (x)                    |
  |           4*log (x)             -3 + 2*log(x) - ----------- + ----------- + --------------                  |
  |     -1 + ----------- + log(x)                          2             2                   2                  |
  |                 2                               1 + log (x)   1 + log (x)   /       2   \                   |
  |5         1 + log (x)                                                        \1 + log (x)/        2*log(x)   |
2*|-- + ------------------------- - ---------------------------------------------------------- + ---------------|
  |27                 2                                           2                                /       2   \|
  \            1 + log (x)                                 1 + log (x)                           3*\1 + log (x)//
-----------------------------------------------------------------------------------------------------------------
                                                 8/3 /       2   \                                               
                                                x   *\1 + log (x)/                                               
$$\frac{2 \left(\frac{5}{27} + \frac{\log{\left(x \right)} - 1 + \frac{4 \log{\left(x \right)}^{2}}{\log{\left(x \right)}^{2} + 1}}{\log{\left(x \right)}^{2} + 1} - \frac{2 \log{\left(x \right)} - 3 + \frac{12 \log{\left(x \right)}^{2}}{\log{\left(x \right)}^{2} + 1} - \frac{12 \log{\left(x \right)}}{\log{\left(x \right)}^{2} + 1} + \frac{24 \log{\left(x \right)}^{3}}{\left(\log{\left(x \right)}^{2} + 1\right)^{2}}}{\log{\left(x \right)}^{2} + 1} + \frac{2 \log{\left(x \right)}}{3 \left(\log{\left(x \right)}^{2} + 1\right)}\right)}{x^{\frac{8}{3}} \left(\log{\left(x \right)}^{2} + 1\right)}$$