3 ___
\/ x
-----------
2
1 + log (x)
x^(1/3)/(1 + log(x)^2)
Apply the quotient rule, which is:
and .
To find :
Apply the power rule: goes to
To find :
Differentiate term by term:
The derivative of the constant is zero.
Let .
Apply the power rule: goes to
Then, apply the chain rule. Multiply by :
The derivative of is .
The result of the chain rule is:
The result is:
Now plug in to the quotient rule:
Now simplify:
The answer is:
1 2*log(x)
-------------------- - -------------------
2/3 / 2 \ 2
3*x *\1 + log (x)/ 2/3 / 2 \
x *\1 + log (x)/
/ 2 \
| 4*log (x) |
| -1 + ----------- + log(x) |
| 2 |
| 1 1 + log (x) 2*log(x) |
2*|- - + ------------------------- - ---------------|
| 9 2 / 2 \|
\ 1 + log (x) 3*\1 + log (x)//
-----------------------------------------------------
5/3 / 2 \
x *\1 + log (x)/
/ 2 3 \
| 2 12*log(x) 12*log (x) 24*log (x) |
| 4*log (x) -3 + 2*log(x) - ----------- + ----------- + -------------- |
| -1 + ----------- + log(x) 2 2 2 |
| 2 1 + log (x) 1 + log (x) / 2 \ |
|5 1 + log (x) \1 + log (x)/ 2*log(x) |
2*|-- + ------------------------- - ---------------------------------------------------------- + ---------------|
|27 2 2 / 2 \|
\ 1 + log (x) 1 + log (x) 3*\1 + log (x)//
-----------------------------------------------------------------------------------------------------------------
8/3 / 2 \
x *\1 + log (x)/