Mister Exam

Derivative of cbrt(cos(x))

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
3 ________
\/ cos(x) 
$$\sqrt[3]{\cos{\left(x \right)}}$$
cos(x)^(1/3)
Detail solution
  1. Let .

  2. Apply the power rule: goes to

  3. Then, apply the chain rule. Multiply by :

    1. The derivative of cosine is negative sine:

    The result of the chain rule is:


The answer is:

The graph
The first derivative [src]
  -sin(x)  
-----------
     2/3   
3*cos   (x)
$$- \frac{\sin{\left(x \right)}}{3 \cos^{\frac{2}{3}}{\left(x \right)}}$$
The second derivative [src]
 /                    2   \ 
 |  3 ________   2*sin (x)| 
-|3*\/ cos(x)  + ---------| 
 |                  5/3   | 
 \               cos   (x)/ 
----------------------------
             9              
$$- \frac{\frac{2 \sin^{2}{\left(x \right)}}{\cos^{\frac{5}{3}}{\left(x \right)}} + 3 \sqrt[3]{\cos{\left(x \right)}}}{9}$$
The third derivative [src]
 /          2   \        
 |    10*sin (x)|        
-|9 + ----------|*sin(x) 
 |        2     |        
 \     cos (x)  /        
-------------------------
             2/3         
       27*cos   (x)      
$$- \frac{\left(\frac{10 \sin^{2}{\left(x \right)}}{\cos^{2}{\left(x \right)}} + 9\right) \sin{\left(x \right)}}{27 \cos^{\frac{2}{3}}{\left(x \right)}}$$