Detail solution
-
Let .
-
Apply the power rule: goes to
-
Then, apply the chain rule. Multiply by :
-
The derivative of cosine is negative sine:
The result of the chain rule is:
The answer is:
The first derivative
[src]
-sin(x)
-----------
2/3
3*cos (x)
$$- \frac{\sin{\left(x \right)}}{3 \cos^{\frac{2}{3}}{\left(x \right)}}$$
The second derivative
[src]
/ 2 \
| 3 ________ 2*sin (x)|
-|3*\/ cos(x) + ---------|
| 5/3 |
\ cos (x)/
----------------------------
9
$$- \frac{\frac{2 \sin^{2}{\left(x \right)}}{\cos^{\frac{5}{3}}{\left(x \right)}} + 3 \sqrt[3]{\cos{\left(x \right)}}}{9}$$
The third derivative
[src]
/ 2 \
| 10*sin (x)|
-|9 + ----------|*sin(x)
| 2 |
\ cos (x) /
-------------------------
2/3
27*cos (x)
$$- \frac{\left(\frac{10 \sin^{2}{\left(x \right)}}{\cos^{2}{\left(x \right)}} + 9\right) \sin{\left(x \right)}}{27 \cos^{\frac{2}{3}}{\left(x \right)}}$$