Mister Exam

Other calculators

Derivative of ctg(xe^(-x)+3sqrtx)

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
   /   -x       ___\
cot\x*E   + 3*\/ x /
$$\cot{\left(3 \sqrt{x} + e^{- x} x \right)}$$
cot(x*E^(-x) + 3*sqrt(x))
Detail solution
  1. There are multiple ways to do this derivative.

    Method #1

    1. Rewrite the function to be differentiated:

    2. Let .

    3. Apply the power rule: goes to

    4. Then, apply the chain rule. Multiply by :

      1. Rewrite the function to be differentiated:

      2. Apply the quotient rule, which is:

        and .

        To find :

        1. Let .

        2. The derivative of sine is cosine:

        3. Then, apply the chain rule. Multiply by :

          1. Differentiate term by term:

            1. Apply the quotient rule, which is:

              and .

              To find :

              1. Apply the power rule: goes to

              To find :

              1. The derivative of is itself.

              Now plug in to the quotient rule:

            2. The derivative of a constant times a function is the constant times the derivative of the function.

              1. Apply the power rule: goes to

              So, the result is:

            The result is:

          The result of the chain rule is:

        To find :

        1. Let .

        2. The derivative of cosine is negative sine:

        3. Then, apply the chain rule. Multiply by :

          1. Differentiate term by term:

            1. Apply the quotient rule, which is:

              and .

              To find :

              1. Apply the power rule: goes to

              To find :

              1. The derivative of is itself.

              Now plug in to the quotient rule:

            2. The derivative of a constant times a function is the constant times the derivative of the function.

              1. Apply the power rule: goes to

              So, the result is:

            The result is:

          The result of the chain rule is:

        Now plug in to the quotient rule:

      The result of the chain rule is:

    Method #2

    1. Rewrite the function to be differentiated:

    2. Apply the quotient rule, which is:

      and .

      To find :

      1. Let .

      2. The derivative of cosine is negative sine:

      3. Then, apply the chain rule. Multiply by :

        1. Differentiate term by term:

          1. Apply the quotient rule, which is:

            and .

            To find :

            1. Apply the power rule: goes to

            To find :

            1. The derivative of is itself.

            Now plug in to the quotient rule:

          2. The derivative of a constant times a function is the constant times the derivative of the function.

            1. Apply the power rule: goes to

            So, the result is:

          The result is:

        The result of the chain rule is:

      To find :

      1. Let .

      2. The derivative of sine is cosine:

      3. Then, apply the chain rule. Multiply by :

        1. Differentiate term by term:

          1. Apply the quotient rule, which is:

            and .

            To find :

            1. Apply the power rule: goes to

            To find :

            1. The derivative of is itself.

            Now plug in to the quotient rule:

          2. The derivative of a constant times a function is the constant times the derivative of the function.

            1. Apply the power rule: goes to

            So, the result is:

          The result is:

        The result of the chain rule is:

      Now plug in to the quotient rule:

  2. Now simplify:


The answer is:

The graph
The first derivative [src]
/        2/   -x       ___\\ / -x      3         -x\
\-1 - cot \x*E   + 3*\/ x //*|E   + ------- - x*e  |
                             |          ___        |
                             \      2*\/ x         /
$$\left(- \cot^{2}{\left(3 \sqrt{x} + e^{- x} x \right)} - 1\right) \left(- x e^{- x} + e^{- x} + \frac{3}{2 \sqrt{x}}\right)$$
The second derivative [src]
/       2/    ___      -x\\ /                                                    2                     \
|1   cot \3*\/ x  + x*e  /| | 3        -x        -x     /   -x     3          -x\     /    ___      -x\|
|- + ---------------------|*|---- + 8*e   - 4*x*e   + 2*|2*e   + ----- - 2*x*e  | *cot\3*\/ x  + x*e  /|
\4             4          / | 3/2                       |          ___          |                      |
                            \x                          \        \/ x           /                      /
$$\left(\frac{\cot^{2}{\left(3 \sqrt{x} + x e^{- x} \right)}}{4} + \frac{1}{4}\right) \left(- 4 x e^{- x} + 2 \left(- 2 x e^{- x} + 2 e^{- x} + \frac{3}{\sqrt{x}}\right)^{2} \cot{\left(3 \sqrt{x} + x e^{- x} \right)} + 8 e^{- x} + \frac{3}{x^{\frac{3}{2}}}\right)$$
The third derivative [src]
 /       2/    ___      -x\\ /                                                     3                                                          3                                                                                                  \
 |1   cot \3*\/ x  + x*e  /| | 9         -x        -x     /   -x     3          -x\  /       2/    ___      -x\\     /   -x     3          -x\     2/    ___      -x\     /   -x     3          -x\ / 3        -x        -x\    /    ___      -x\|
-|- + ---------------------|*|---- + 24*e   - 8*x*e   + 2*|2*e   + ----- - 2*x*e  | *\1 + cot \3*\/ x  + x*e  // + 4*|2*e   + ----- - 2*x*e  | *cot \3*\/ x  + x*e  / + 6*|2*e   + ----- - 2*x*e  |*|---- + 8*e   - 4*x*e  |*cot\3*\/ x  + x*e  /|
 \8             8          / | 5/2                        |          ___          |                                  |          ___          |                            |          ___          | | 3/2                  |                     |
                             \x                           \        \/ x           /                                  \        \/ x           /                            \        \/ x           / \x                     /                     /
$$- \left(\frac{\cot^{2}{\left(3 \sqrt{x} + x e^{- x} \right)}}{8} + \frac{1}{8}\right) \left(- 8 x e^{- x} + 2 \left(\cot^{2}{\left(3 \sqrt{x} + x e^{- x} \right)} + 1\right) \left(- 2 x e^{- x} + 2 e^{- x} + \frac{3}{\sqrt{x}}\right)^{3} + 6 \left(- 4 x e^{- x} + 8 e^{- x} + \frac{3}{x^{\frac{3}{2}}}\right) \left(- 2 x e^{- x} + 2 e^{- x} + \frac{3}{\sqrt{x}}\right) \cot{\left(3 \sqrt{x} + x e^{- x} \right)} + 4 \left(- 2 x e^{- x} + 2 e^{- x} + \frac{3}{\sqrt{x}}\right)^{3} \cot^{2}{\left(3 \sqrt{x} + x e^{- x} \right)} + 24 e^{- x} + \frac{9}{x^{\frac{5}{2}}}\right)$$