Mister Exam

Other calculators

Derivative of ctg2-((cos^2(8x))/(16sin(16x)))

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
             2       
          cos (8*x)  
cot(2) - ------------
         16*sin(16*x)
$$\cot{\left(2 \right)} - \frac{\cos^{2}{\left(8 x \right)}}{16 \sin{\left(16 x \right)}}$$
cot(2) - cos(8*x)^2/(16*sin(16*x))
Detail solution
  1. Differentiate term by term:

    1. There are multiple ways to do this derivative.

      Method #1

      1. Rewrite the function to be differentiated:

      2. The derivative of the constant is zero.

      Method #2

      1. Rewrite the function to be differentiated:

      2. The derivative of the constant is zero.

    2. The derivative of a constant times a function is the constant times the derivative of the function.

      1. Apply the quotient rule, which is:

        and .

        To find :

        1. Let .

        2. Apply the power rule: goes to

        3. Then, apply the chain rule. Multiply by :

          1. Let .

          2. The derivative of cosine is negative sine:

          3. Then, apply the chain rule. Multiply by :

            1. The derivative of a constant times a function is the constant times the derivative of the function.

              1. Apply the power rule: goes to

              So, the result is:

            The result of the chain rule is:

          The result of the chain rule is:

        To find :

        1. The derivative of a constant times a function is the constant times the derivative of the function.

          1. Let .

          2. The derivative of sine is cosine:

          3. Then, apply the chain rule. Multiply by :

            1. The derivative of a constant times a function is the constant times the derivative of the function.

              1. Apply the power rule: goes to

              So, the result is:

            The result of the chain rule is:

          So, the result is:

        Now plug in to the quotient rule:

      So, the result is:

    The result is:

  2. Now simplify:


The answer is:

The first derivative [src]
   2                                                   
cos (8*x)*cos(16*x)           1                        
------------------- + 16*------------*cos(8*x)*sin(8*x)
        2                16*sin(16*x)                  
     sin (16*x)                                        
$$16 \sin{\left(8 x \right)} \frac{1}{16 \sin{\left(16 x \right)}} \cos{\left(8 x \right)} + \frac{\cos^{2}{\left(8 x \right)} \cos{\left(16 x \right)}}{\sin^{2}{\left(16 x \right)}}$$
The second derivative [src]
   /                             2         2                                      \
   |   2           2        4*cos (8*x)*cos (16*x)   4*cos(8*x)*cos(16*x)*sin(8*x)|
-8*|cos (8*x) + sin (8*x) + ---------------------- + -----------------------------|
   |                                 2                         sin(16*x)          |
   \                              sin (16*x)                                      /
-----------------------------------------------------------------------------------
                                     sin(16*x)                                     
$$- \frac{8 \left(\sin^{2}{\left(8 x \right)} + \frac{4 \sin{\left(8 x \right)} \cos{\left(8 x \right)} \cos{\left(16 x \right)}}{\sin{\left(16 x \right)}} + \cos^{2}{\left(8 x \right)} + \frac{4 \cos^{2}{\left(8 x \right)} \cos^{2}{\left(16 x \right)}}{\sin^{2}{\left(16 x \right)}}\right)}{\sin{\left(16 x \right)}}$$
The third derivative [src]
    /                           2                       2                        2         3               2                        \
    |                      3*sin (8*x)*cos(16*x)   7*cos (8*x)*cos(16*x)   12*cos (8*x)*cos (16*x)   12*cos (16*x)*cos(8*x)*sin(8*x)|
128*|4*cos(8*x)*sin(8*x) + --------------------- + --------------------- + ----------------------- + -------------------------------|
    |                            sin(16*x)               sin(16*x)                   3                             2                |
    \                                                                             sin (16*x)                    sin (16*x)          /
-------------------------------------------------------------------------------------------------------------------------------------
                                                              sin(16*x)                                                              
$$\frac{128 \left(\frac{3 \sin^{2}{\left(8 x \right)} \cos{\left(16 x \right)}}{\sin{\left(16 x \right)}} + 4 \sin{\left(8 x \right)} \cos{\left(8 x \right)} + \frac{12 \sin{\left(8 x \right)} \cos{\left(8 x \right)} \cos^{2}{\left(16 x \right)}}{\sin^{2}{\left(16 x \right)}} + \frac{7 \cos^{2}{\left(8 x \right)} \cos{\left(16 x \right)}}{\sin{\left(16 x \right)}} + \frac{12 \cos^{2}{\left(8 x \right)} \cos^{3}{\left(16 x \right)}}{\sin^{3}{\left(16 x \right)}}\right)}{\sin{\left(16 x \right)}}$$