Mister Exam

Other calculators


ctg^2(x)+1

Derivative of ctg^2(x)+1

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
   2       
cot (x) + 1
cot2(x)+1\cot^{2}{\left(x \right)} + 1
d /   2       \
--\cot (x) + 1/
dx             
ddx(cot2(x)+1)\frac{d}{d x} \left(\cot^{2}{\left(x \right)} + 1\right)
Detail solution
  1. Differentiate cot2(x)+1\cot^{2}{\left(x \right)} + 1 term by term:

    1. Let u=cot(x)u = \cot{\left(x \right)}.

    2. Apply the power rule: u2u^{2} goes to 2u2 u

    3. Then, apply the chain rule. Multiply by ddxcot(x)\frac{d}{d x} \cot{\left(x \right)}:

      1. There are multiple ways to do this derivative.

        Method #1

        1. Rewrite the function to be differentiated:

          cot(x)=1tan(x)\cot{\left(x \right)} = \frac{1}{\tan{\left(x \right)}}

        2. Let u=tan(x)u = \tan{\left(x \right)}.

        3. Apply the power rule: 1u\frac{1}{u} goes to 1u2- \frac{1}{u^{2}}

        4. Then, apply the chain rule. Multiply by ddxtan(x)\frac{d}{d x} \tan{\left(x \right)}:

          1. Rewrite the function to be differentiated:

            tan(x)=sin(x)cos(x)\tan{\left(x \right)} = \frac{\sin{\left(x \right)}}{\cos{\left(x \right)}}

          2. Apply the quotient rule, which is:

            ddxf(x)g(x)=f(x)ddxg(x)+g(x)ddxf(x)g2(x)\frac{d}{d x} \frac{f{\left(x \right)}}{g{\left(x \right)}} = \frac{- f{\left(x \right)} \frac{d}{d x} g{\left(x \right)} + g{\left(x \right)} \frac{d}{d x} f{\left(x \right)}}{g^{2}{\left(x \right)}}

            f(x)=sin(x)f{\left(x \right)} = \sin{\left(x \right)} and g(x)=cos(x)g{\left(x \right)} = \cos{\left(x \right)}.

            To find ddxf(x)\frac{d}{d x} f{\left(x \right)}:

            1. The derivative of sine is cosine:

              ddxsin(x)=cos(x)\frac{d}{d x} \sin{\left(x \right)} = \cos{\left(x \right)}

            To find ddxg(x)\frac{d}{d x} g{\left(x \right)}:

            1. The derivative of cosine is negative sine:

              ddxcos(x)=sin(x)\frac{d}{d x} \cos{\left(x \right)} = - \sin{\left(x \right)}

            Now plug in to the quotient rule:

            sin2(x)+cos2(x)cos2(x)\frac{\sin^{2}{\left(x \right)} + \cos^{2}{\left(x \right)}}{\cos^{2}{\left(x \right)}}

          The result of the chain rule is:

          sin2(x)+cos2(x)cos2(x)tan2(x)- \frac{\sin^{2}{\left(x \right)} + \cos^{2}{\left(x \right)}}{\cos^{2}{\left(x \right)} \tan^{2}{\left(x \right)}}

        Method #2

        1. Rewrite the function to be differentiated:

          cot(x)=cos(x)sin(x)\cot{\left(x \right)} = \frac{\cos{\left(x \right)}}{\sin{\left(x \right)}}

        2. Apply the quotient rule, which is:

          ddxf(x)g(x)=f(x)ddxg(x)+g(x)ddxf(x)g2(x)\frac{d}{d x} \frac{f{\left(x \right)}}{g{\left(x \right)}} = \frac{- f{\left(x \right)} \frac{d}{d x} g{\left(x \right)} + g{\left(x \right)} \frac{d}{d x} f{\left(x \right)}}{g^{2}{\left(x \right)}}

          f(x)=cos(x)f{\left(x \right)} = \cos{\left(x \right)} and g(x)=sin(x)g{\left(x \right)} = \sin{\left(x \right)}.

          To find ddxf(x)\frac{d}{d x} f{\left(x \right)}:

          1. The derivative of cosine is negative sine:

            ddxcos(x)=sin(x)\frac{d}{d x} \cos{\left(x \right)} = - \sin{\left(x \right)}

          To find ddxg(x)\frac{d}{d x} g{\left(x \right)}:

          1. The derivative of sine is cosine:

            ddxsin(x)=cos(x)\frac{d}{d x} \sin{\left(x \right)} = \cos{\left(x \right)}

          Now plug in to the quotient rule:

          sin2(x)cos2(x)sin2(x)\frac{- \sin^{2}{\left(x \right)} - \cos^{2}{\left(x \right)}}{\sin^{2}{\left(x \right)}}

      The result of the chain rule is:

      2(sin2(x)+cos2(x))cot(x)cos2(x)tan2(x)- \frac{2 \left(\sin^{2}{\left(x \right)} + \cos^{2}{\left(x \right)}\right) \cot{\left(x \right)}}{\cos^{2}{\left(x \right)} \tan^{2}{\left(x \right)}}

    4. The derivative of the constant 11 is zero.

    The result is: 2(sin2(x)+cos2(x))cot(x)cos2(x)tan2(x)- \frac{2 \left(\sin^{2}{\left(x \right)} + \cos^{2}{\left(x \right)}\right) \cot{\left(x \right)}}{\cos^{2}{\left(x \right)} \tan^{2}{\left(x \right)}}

  2. Now simplify:

    2cos(x)sin3(x)- \frac{2 \cos{\left(x \right)}}{\sin^{3}{\left(x \right)}}


The answer is:

2cos(x)sin3(x)- \frac{2 \cos{\left(x \right)}}{\sin^{3}{\left(x \right)}}

The graph
02468-8-6-4-2-1010-50000005000000
The first derivative [src]
/          2   \       
\-2 - 2*cot (x)/*cot(x)
(2cot2(x)2)cot(x)\left(- 2 \cot^{2}{\left(x \right)} - 2\right) \cot{\left(x \right)}
The second derivative [src]
  /       2   \ /         2   \
2*\1 + cot (x)/*\1 + 3*cot (x)/
2(cot2(x)+1)(3cot2(x)+1)2 \left(\cot^{2}{\left(x \right)} + 1\right) \left(3 \cot^{2}{\left(x \right)} + 1\right)
The third derivative [src]
   /       2   \ /         2   \       
-8*\1 + cot (x)/*\2 + 3*cot (x)/*cot(x)
8(cot2(x)+1)(3cot2(x)+2)cot(x)- 8 \left(\cot^{2}{\left(x \right)} + 1\right) \left(3 \cot^{2}{\left(x \right)} + 2\right) \cot{\left(x \right)}
The graph
Derivative of ctg^2(x)+1