Mister Exam

Other calculators


((ctg)^3(4x))*(arctg(2x))

Derivative of ((ctg)^3(4x))*(arctg(2x))

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
   3                 
cot (x)*4*x*atan(2*x)
$$\cot^{3}{\left(x \right)} 4 x \operatorname{atan}{\left(2 x \right)}$$
d /   3                 \
--\cot (x)*4*x*atan(2*x)/
dx                       
$$\frac{d}{d x} \cot^{3}{\left(x \right)} 4 x \operatorname{atan}{\left(2 x \right)}$$
The graph
The first derivative [src]
                             3                                            
     3                8*x*cot (x)          2    /          2   \          
4*cot (x)*atan(2*x) + ----------- + 4*x*cot (x)*\-3 - 3*cot (x)/*atan(2*x)
                               2                                          
                        1 + 4*x                                           
$$4 x \left(- 3 \cot^{2}{\left(x \right)} - 3\right) \cot^{2}{\left(x \right)} \operatorname{atan}{\left(2 x \right)} + 4 \cot^{3}{\left(x \right)} \operatorname{atan}{\left(2 x \right)} + \frac{8 x \cot^{3}{\left(x \right)}}{4 x^{2} + 1}$$
The second derivative [src]
  /     2         2    2                                             /       2   \                                                     \       
  |2*cot (x)   8*x *cot (x)     /       2   \                    6*x*\1 + cot (x)/*cot(x)       /       2   \ /         2   \          |       
8*|--------- - ------------ - 3*\1 + cot (x)/*atan(2*x)*cot(x) - ------------------------ + 3*x*\1 + cot (x)/*\1 + 2*cot (x)/*atan(2*x)|*cot(x)
  |        2             2                                                      2                                                      |       
  | 1 + 4*x    /       2\                                                1 + 4*x                                                       |       
  \            \1 + 4*x /                                                                                                              /       
$$8 \left(3 x \left(\cot^{2}{\left(x \right)} + 1\right) \left(2 \cot^{2}{\left(x \right)} + 1\right) \operatorname{atan}{\left(2 x \right)} - 3 \left(\cot^{2}{\left(x \right)} + 1\right) \cot{\left(x \right)} \operatorname{atan}{\left(2 x \right)} - \frac{8 x^{2} \cot^{2}{\left(x \right)}}{\left(4 x^{2} + 1\right)^{2}} - \frac{6 x \left(\cot^{2}{\left(x \right)} + 1\right) \cot{\left(x \right)}}{4 x^{2} + 1} + \frac{2 \cot^{2}{\left(x \right)}}{4 x^{2} + 1}\right) \cot{\left(x \right)}$$
The third derivative [src]
  /                                                                                                                                             /          2  \                                                                                                                             \
  |                                                                                                                                        3    |      16*x   |                                                                                                                             |
  |                                                                                                                                 8*x*cot (x)*|-1 + --------|                                                                                                                             |
  |          3            2    /       2   \                     /             2                                      \                         |            2|                                                          2    2    /       2   \        /       2   \ /         2   \       |
  |  24*x*cot (x)   18*cot (x)*\1 + cot (x)/       /       2   \ |/       2   \         4           2    /       2   \|                         \     1 + 4*x /     /       2   \ /         2   \                    72*x *cot (x)*\1 + cot (x)/   18*x*\1 + cot (x)/*\1 + 2*cot (x)/*cot(x)|
8*|- ------------ - ------------------------ - 3*x*\1 + cot (x)/*\\1 + cot (x)/  + 2*cot (x) + 7*cot (x)*\1 + cot (x)//*atan(2*x) + --------------------------- + 9*\1 + cot (x)/*\1 + 2*cot (x)/*atan(2*x)*cot(x) + --------------------------- + -----------------------------------------|
  |            2                   2                                                                                                                  2                                                                                2                                   2                |
  |  /       2\             1 + 4*x                                                                                                         /       2\                                                                       /       2\                             1 + 4*x                 |
  \  \1 + 4*x /                                                                                                                             \1 + 4*x /                                                                       \1 + 4*x /                                                     /
$$8 \cdot \left(- 3 x \left(\cot^{2}{\left(x \right)} + 1\right) \left(2 \cot^{4}{\left(x \right)} + 7 \left(\cot^{2}{\left(x \right)} + 1\right) \cot^{2}{\left(x \right)} + \left(\cot^{2}{\left(x \right)} + 1\right)^{2}\right) \operatorname{atan}{\left(2 x \right)} + 9 \left(\cot^{2}{\left(x \right)} + 1\right) \left(2 \cot^{2}{\left(x \right)} + 1\right) \cot{\left(x \right)} \operatorname{atan}{\left(2 x \right)} + \frac{72 x^{2} \left(\cot^{2}{\left(x \right)} + 1\right) \cot^{2}{\left(x \right)}}{\left(4 x^{2} + 1\right)^{2}} + \frac{18 x \left(\cot^{2}{\left(x \right)} + 1\right) \left(2 \cot^{2}{\left(x \right)} + 1\right) \cot{\left(x \right)}}{4 x^{2} + 1} + \frac{8 x \left(\frac{16 x^{2}}{4 x^{2} + 1} - 1\right) \cot^{3}{\left(x \right)}}{\left(4 x^{2} + 1\right)^{2}} - \frac{24 x \cot^{3}{\left(x \right)}}{\left(4 x^{2} + 1\right)^{2}} - \frac{18 \left(\cot^{2}{\left(x \right)} + 1\right) \cot^{2}{\left(x \right)}}{4 x^{2} + 1}\right)$$
The graph
Derivative of ((ctg)^3(4x))*(arctg(2x))