Mister Exam

Other calculators

Derivative of ctg^4(5^x)

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
   4/ x\
cot \5 /
$$\cot^{4}{\left(5^{x} \right)}$$
cot(5^x)^4
Detail solution
  1. Let .

  2. Apply the power rule: goes to

  3. Then, apply the chain rule. Multiply by :

    1. There are multiple ways to do this derivative.

      Method #1

      1. Rewrite the function to be differentiated:

      2. Let .

      3. Apply the power rule: goes to

      4. Then, apply the chain rule. Multiply by :

        1. Rewrite the function to be differentiated:

        2. Apply the quotient rule, which is:

          and .

          To find :

          1. Let .

          2. The derivative of sine is cosine:

          3. Then, apply the chain rule. Multiply by :

            The result of the chain rule is:

          To find :

          1. Let .

          2. The derivative of cosine is negative sine:

          3. Then, apply the chain rule. Multiply by :

            The result of the chain rule is:

          Now plug in to the quotient rule:

        The result of the chain rule is:

      Method #2

      1. Rewrite the function to be differentiated:

      2. Apply the quotient rule, which is:

        and .

        To find :

        1. Let .

        2. The derivative of cosine is negative sine:

        3. Then, apply the chain rule. Multiply by :

          The result of the chain rule is:

        To find :

        1. Let .

        2. The derivative of sine is cosine:

        3. Then, apply the chain rule. Multiply by :

          The result of the chain rule is:

        Now plug in to the quotient rule:

    The result of the chain rule is:

  4. Now simplify:


The answer is:

The graph
The first derivative [src]
   x    3/ x\ /        2/ x\\       
4*5 *cot \5 /*\-1 - cot \5 //*log(5)
$$4 \cdot 5^{x} \left(- \cot^{2}{\left(5^{x} \right)} - 1\right) \log{\left(5 \right)} \cot^{3}{\left(5^{x} \right)}$$
The second derivative [src]
   x    2/ x\    2    /       2/ x\\ /     / x\      x    2/ x\      x /       2/ x\\\
4*5 *cot \5 /*log (5)*\1 + cot \5 //*\- cot\5 / + 2*5 *cot \5 / + 3*5 *\1 + cot \5 ///
$$4 \cdot 5^{x} \left(\cot^{2}{\left(5^{x} \right)} + 1\right) \left(3 \cdot 5^{x} \left(\cot^{2}{\left(5^{x} \right)} + 1\right) + 2 \cdot 5^{x} \cot^{2}{\left(5^{x} \right)} - \cot{\left(5^{x} \right)}\right) \log{\left(5 \right)}^{2} \cot^{2}{\left(5^{x} \right)}$$
The third derivative [src]
                            /                                  2                                                                                                  \        
   x    3    /       2/ x\\ |     2/ x\      2*x /       2/ x\\       2*x    4/ x\      x    3/ x\       2*x    2/ x\ /       2/ x\\      x /       2/ x\\    / x\|    / x\
4*5 *log (5)*\1 + cot \5 //*\- cot \5 / - 6*5   *\1 + cot \5 //  - 4*5   *cot \5 / + 6*5 *cot \5 / - 20*5   *cot \5 /*\1 + cot \5 // + 9*5 *\1 + cot \5 //*cot\5 //*cot\5 /
$$4 \cdot 5^{x} \left(\cot^{2}{\left(5^{x} \right)} + 1\right) \left(- 6 \cdot 5^{2 x} \left(\cot^{2}{\left(5^{x} \right)} + 1\right)^{2} - 20 \cdot 5^{2 x} \left(\cot^{2}{\left(5^{x} \right)} + 1\right) \cot^{2}{\left(5^{x} \right)} - 4 \cdot 5^{2 x} \cot^{4}{\left(5^{x} \right)} + 9 \cdot 5^{x} \left(\cot^{2}{\left(5^{x} \right)} + 1\right) \cot{\left(5^{x} \right)} + 6 \cdot 5^{x} \cot^{3}{\left(5^{x} \right)} - \cot^{2}{\left(5^{x} \right)}\right) \log{\left(5 \right)}^{3} \cot{\left(5^{x} \right)}$$