Mister Exam

Other calculators

Derivative of ctg(lnx)*sin^3(x)

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
               3   
cot(log(x))*sin (x)
$$\sin^{3}{\left(x \right)} \cot{\left(\log{\left(x \right)} \right)}$$
cot(log(x))*sin(x)^3
Detail solution
  1. Apply the product rule:

    ; to find :

    1. There are multiple ways to do this derivative.

      Method #1

      1. Rewrite the function to be differentiated:

      2. Let .

      3. Apply the power rule: goes to

      4. Then, apply the chain rule. Multiply by :

        1. Rewrite the function to be differentiated:

        2. Apply the quotient rule, which is:

          and .

          To find :

          1. Let .

          2. The derivative of sine is cosine:

          3. Then, apply the chain rule. Multiply by :

            1. The derivative of is .

            The result of the chain rule is:

          To find :

          1. Let .

          2. The derivative of cosine is negative sine:

          3. Then, apply the chain rule. Multiply by :

            1. The derivative of is .

            The result of the chain rule is:

          Now plug in to the quotient rule:

        The result of the chain rule is:

      Method #2

      1. Rewrite the function to be differentiated:

      2. Apply the quotient rule, which is:

        and .

        To find :

        1. Let .

        2. The derivative of cosine is negative sine:

        3. Then, apply the chain rule. Multiply by :

          1. The derivative of is .

          The result of the chain rule is:

        To find :

        1. Let .

        2. The derivative of sine is cosine:

        3. Then, apply the chain rule. Multiply by :

          1. The derivative of is .

          The result of the chain rule is:

        Now plug in to the quotient rule:

    ; to find :

    1. Let .

    2. Apply the power rule: goes to

    3. Then, apply the chain rule. Multiply by :

      1. The derivative of sine is cosine:

      The result of the chain rule is:

    The result is:

  2. Now simplify:


The answer is:

The graph
The first derivative [src]
   3    /        2        \                               
sin (x)*\-1 - cot (log(x))/        2                      
--------------------------- + 3*sin (x)*cos(x)*cot(log(x))
             x                                            
$$3 \sin^{2}{\left(x \right)} \cos{\left(x \right)} \cot{\left(\log{\left(x \right)} \right)} + \frac{\left(- \cot^{2}{\left(\log{\left(x \right)} \right)} - 1\right) \sin^{3}{\left(x \right)}}{x}$$
The second derivative [src]
/                                           2    /       2        \                         /       2        \              \       
|    /   2           2   \               sin (x)*\1 + cot (log(x))/*(1 + 2*cot(log(x)))   6*\1 + cot (log(x))/*cos(x)*sin(x)|       
|- 3*\sin (x) - 2*cos (x)/*cot(log(x)) + ---------------------------------------------- - ----------------------------------|*sin(x)
|                                                               2                                         x                 |       
\                                                              x                                                            /       
$$\left(- 3 \left(\sin^{2}{\left(x \right)} - 2 \cos^{2}{\left(x \right)}\right) \cot{\left(\log{\left(x \right)} \right)} - \frac{6 \left(\cot^{2}{\left(\log{\left(x \right)} \right)} + 1\right) \sin{\left(x \right)} \cos{\left(x \right)}}{x} + \frac{\left(2 \cot{\left(\log{\left(x \right)} \right)} + 1\right) \left(\cot^{2}{\left(\log{\left(x \right)} \right)} + 1\right) \sin^{2}{\left(x \right)}}{x^{2}}\right) \sin{\left(x \right)}$$
The third derivative [src]
                                                        3    /       2        \ /         2                        \     /       2        \ /   2           2   \               2    /       2        \                           
    /       2           2   \                      2*sin (x)*\1 + cot (log(x))/*\2 + 3*cot (log(x)) + 3*cot(log(x))/   9*\1 + cot (log(x))/*\sin (x) - 2*cos (x)/*sin(x)   9*sin (x)*\1 + cot (log(x))/*(1 + 2*cot(log(x)))*cos(x)
- 3*\- 2*cos (x) + 7*sin (x)/*cos(x)*cot(log(x)) - ----------------------------------------------------------------- + ------------------------------------------------- + -------------------------------------------------------
                                                                                    3                                                          x                                                       2                          
                                                                                   x                                                                                                                  x                           
$$- 3 \left(7 \sin^{2}{\left(x \right)} - 2 \cos^{2}{\left(x \right)}\right) \cos{\left(x \right)} \cot{\left(\log{\left(x \right)} \right)} + \frac{9 \left(\sin^{2}{\left(x \right)} - 2 \cos^{2}{\left(x \right)}\right) \left(\cot^{2}{\left(\log{\left(x \right)} \right)} + 1\right) \sin{\left(x \right)}}{x} + \frac{9 \left(2 \cot{\left(\log{\left(x \right)} \right)} + 1\right) \left(\cot^{2}{\left(\log{\left(x \right)} \right)} + 1\right) \sin^{2}{\left(x \right)} \cos{\left(x \right)}}{x^{2}} - \frac{2 \left(\cot^{2}{\left(\log{\left(x \right)} \right)} + 1\right) \left(3 \cot^{2}{\left(\log{\left(x \right)} \right)} + 3 \cot{\left(\log{\left(x \right)} \right)} + 2\right) \sin^{3}{\left(x \right)}}{x^{3}}$$