Mister Exam

Other calculators

Derivative of ctg(ln(4^x-1))

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
   /   / x    \\
cot\log\4  - 1//
$$\cot{\left(\log{\left(4^{x} - 1 \right)} \right)}$$
cot(log(4^x - 1))
Detail solution
  1. There are multiple ways to do this derivative.

    Method #1

    1. Rewrite the function to be differentiated:

    2. Let .

    3. Apply the power rule: goes to

    4. Then, apply the chain rule. Multiply by :

      1. Rewrite the function to be differentiated:

      2. Apply the quotient rule, which is:

        and .

        To find :

        1. Let .

        2. The derivative of sine is cosine:

        3. Then, apply the chain rule. Multiply by :

          1. Let .

          2. The derivative of is .

          3. Then, apply the chain rule. Multiply by :

            1. Differentiate term by term:

              1. The derivative of the constant is zero.

              The result is:

            The result of the chain rule is:

          The result of the chain rule is:

        To find :

        1. Let .

        2. The derivative of cosine is negative sine:

        3. Then, apply the chain rule. Multiply by :

          1. Let .

          2. The derivative of is .

          3. Then, apply the chain rule. Multiply by :

            1. Differentiate term by term:

              1. The derivative of the constant is zero.

              The result is:

            The result of the chain rule is:

          The result of the chain rule is:

        Now plug in to the quotient rule:

      The result of the chain rule is:

    Method #2

    1. Rewrite the function to be differentiated:

    2. Apply the quotient rule, which is:

      and .

      To find :

      1. Let .

      2. The derivative of cosine is negative sine:

      3. Then, apply the chain rule. Multiply by :

        1. Let .

        2. The derivative of is .

        3. Then, apply the chain rule. Multiply by :

          1. Differentiate term by term:

            1. The derivative of the constant is zero.

            The result is:

          The result of the chain rule is:

        The result of the chain rule is:

      To find :

      1. Let .

      2. The derivative of sine is cosine:

      3. Then, apply the chain rule. Multiply by :

        1. Let .

        2. The derivative of is .

        3. Then, apply the chain rule. Multiply by :

          1. Differentiate term by term:

            1. The derivative of the constant is zero.

            The result is:

          The result of the chain rule is:

        The result of the chain rule is:

      Now plug in to the quotient rule:

  2. Now simplify:


The answer is:

The graph
The first derivative [src]
 x /        2/   / x    \\\       
4 *\-1 - cot \log\4  - 1///*log(4)
----------------------------------
               x                  
              4  - 1              
$$\frac{4^{x} \left(- \cot^{2}{\left(\log{\left(4^{x} - 1 \right)} \right)} - 1\right) \log{\left(4 \right)}}{4^{x} - 1}$$
The second derivative [src]
                                    /         x        x    /   /      x\\\
 x    2    /       2/   /      x\\\ |        4      2*4 *cot\log\-1 + 4 //|
4 *log (4)*\1 + cot \log\-1 + 4 ///*|-1 + ------- + ----------------------|
                                    |           x                x        |
                                    \     -1 + 4           -1 + 4         /
---------------------------------------------------------------------------
                                        x                                  
                                  -1 + 4                                   
$$\frac{4^{x} \left(\cot^{2}{\left(\log{\left(4^{x} - 1 \right)} \right)} + 1\right) \left(\frac{2 \cdot 4^{x} \cot{\left(\log{\left(4^{x} - 1 \right)} \right)}}{4^{x} - 1} + \frac{4^{x}}{4^{x} - 1} - 1\right) \log{\left(4 \right)}^{2}}{4^{x} - 1}$$
The third derivative [src]
                                    /          2*x          x       2*x    /   /      x\\      2*x    2/   /      x\\      2*x /       2/   /      x\\\      x    /   /      x\\\
 x    3    /       2/   /      x\\\ |       2*4          3*4     6*4   *cot\log\-1 + 4 //   4*4   *cot \log\-1 + 4 //   2*4   *\1 + cot \log\-1 + 4 ///   6*4 *cot\log\-1 + 4 //|
4 *log (4)*\1 + cot \log\-1 + 4 ///*|-1 - ---------- + ------- - ------------------------ - ------------------------- - ------------------------------- + ----------------------|
                                    |              2         x                   2                           2                              2                          x        |
                                    |     /      x\    -1 + 4           /      x\                   /      x\                      /      x\                     -1 + 4         |
                                    \     \-1 + 4 /                     \-1 + 4 /                   \-1 + 4 /                      \-1 + 4 /                                    /
---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
                                                                                           x                                                                                     
                                                                                     -1 + 4                                                                                      
$$\frac{4^{x} \left(\cot^{2}{\left(\log{\left(4^{x} - 1 \right)} \right)} + 1\right) \left(- \frac{2 \cdot 4^{2 x} \left(\cot^{2}{\left(\log{\left(4^{x} - 1 \right)} \right)} + 1\right)}{\left(4^{x} - 1\right)^{2}} - \frac{4 \cdot 4^{2 x} \cot^{2}{\left(\log{\left(4^{x} - 1 \right)} \right)}}{\left(4^{x} - 1\right)^{2}} - \frac{6 \cdot 4^{2 x} \cot{\left(\log{\left(4^{x} - 1 \right)} \right)}}{\left(4^{x} - 1\right)^{2}} - \frac{2 \cdot 4^{2 x}}{\left(4^{x} - 1\right)^{2}} + \frac{6 \cdot 4^{x} \cot{\left(\log{\left(4^{x} - 1 \right)} \right)}}{4^{x} - 1} + \frac{3 \cdot 4^{x}}{4^{x} - 1} - 1\right) \log{\left(4 \right)}^{3}}{4^{x} - 1}$$