Mister Exam

Derivative of cschx

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
csch(x)
csch(x)\operatorname{csch}{\left(x \right)}
csch(x)
The graph
02468-8-6-4-2-1010-200100
The first derivative [src]
-coth(x)*csch(x)
coth(x)csch(x)- \coth{\left(x \right)} \operatorname{csch}{\left(x \right)}
The second derivative [src]
/    2         1    \        
|coth (x) + --------|*csch(x)
|               2   |        
\           sinh (x)/        
(coth2(x)+1sinh2(x))csch(x)\left(\coth^{2}{\left(x \right)} + \frac{1}{\sinh^{2}{\left(x \right)}}\right) \operatorname{csch}{\left(x \right)}
The third derivative [src]
 /    3      2*cosh(x)   3*coth(x)\        
-|coth (x) + --------- + ---------|*csch(x)
 |                3           2   |        
 \            sinh (x)    sinh (x)/        
(coth3(x)+3coth(x)sinh2(x)+2cosh(x)sinh3(x))csch(x)- \left(\coth^{3}{\left(x \right)} + \frac{3 \coth{\left(x \right)}}{\sinh^{2}{\left(x \right)}} + \frac{2 \cosh{\left(x \right)}}{\sinh^{3}{\left(x \right)}}\right) \operatorname{csch}{\left(x \right)}
The graph
Derivative of cschx