Detail solution
-
Apply the product rule:
; to find :
-
Apply the product rule:
; to find :
-
The derivative of cosine is negative sine:
; to find :
-
Apply the power rule: goes to
The result is:
; to find :
-
Apply the power rule: goes to
The result is:
-
Now simplify:
The answer is:
The first derivative
[src]
x*(-x*sin(x) + cos(x)) + cos(x)*x
$$x \left(- x \sin{\left(x \right)} + \cos{\left(x \right)}\right) + x \cos{\left(x \right)}$$
The second derivative
[src]
2*cos(x) - x*(2*sin(x) + x*cos(x)) - 2*x*sin(x)
$$- x \left(x \cos{\left(x \right)} + 2 \sin{\left(x \right)}\right) - 2 x \sin{\left(x \right)} + 2 \cos{\left(x \right)}$$
The third derivative
[src]
-6*sin(x) + x*(-3*cos(x) + x*sin(x)) - 3*x*cos(x)
$$x \left(x \sin{\left(x \right)} - 3 \cos{\left(x \right)}\right) - 3 x \cos{\left(x \right)} - 6 \sin{\left(x \right)}$$