Mister Exam

Derivative of cox(x)*x

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
cos(x)*x*x
$$x x \cos{\left(x \right)}$$
(cos(x)*x)*x
Detail solution
  1. Apply the product rule:

    ; to find :

    1. Apply the product rule:

      ; to find :

      1. The derivative of cosine is negative sine:

      ; to find :

      1. Apply the power rule: goes to

      The result is:

    ; to find :

    1. Apply the power rule: goes to

    The result is:

  2. Now simplify:


The answer is:

The graph
The first derivative [src]
x*(-x*sin(x) + cos(x)) + cos(x)*x
$$x \left(- x \sin{\left(x \right)} + \cos{\left(x \right)}\right) + x \cos{\left(x \right)}$$
The second derivative [src]
2*cos(x) - x*(2*sin(x) + x*cos(x)) - 2*x*sin(x)
$$- x \left(x \cos{\left(x \right)} + 2 \sin{\left(x \right)}\right) - 2 x \sin{\left(x \right)} + 2 \cos{\left(x \right)}$$
The third derivative [src]
-6*sin(x) + x*(-3*cos(x) + x*sin(x)) - 3*x*cos(x)
$$x \left(x \sin{\left(x \right)} - 3 \cos{\left(x \right)}\right) - 3 x \cos{\left(x \right)} - 6 \sin{\left(x \right)}$$