Mister Exam

Other calculators

Derivative of cot(2*x)/cos(6*x)

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
cot(2*x)
--------
cos(6*x)
$$\frac{\cot{\left(2 x \right)}}{\cos{\left(6 x \right)}}$$
cot(2*x)/cos(6*x)
Detail solution
  1. Apply the quotient rule, which is:

    and .

    To find :

    1. There are multiple ways to do this derivative.

      Method #1

      1. Rewrite the function to be differentiated:

      2. Let .

      3. Apply the power rule: goes to

      4. Then, apply the chain rule. Multiply by :

        1. Rewrite the function to be differentiated:

        2. Apply the quotient rule, which is:

          and .

          To find :

          1. Let .

          2. The derivative of sine is cosine:

          3. Then, apply the chain rule. Multiply by :

            1. The derivative of a constant times a function is the constant times the derivative of the function.

              1. Apply the power rule: goes to

              So, the result is:

            The result of the chain rule is:

          To find :

          1. Let .

          2. The derivative of cosine is negative sine:

          3. Then, apply the chain rule. Multiply by :

            1. The derivative of a constant times a function is the constant times the derivative of the function.

              1. Apply the power rule: goes to

              So, the result is:

            The result of the chain rule is:

          Now plug in to the quotient rule:

        The result of the chain rule is:

      Method #2

      1. Rewrite the function to be differentiated:

      2. Apply the quotient rule, which is:

        and .

        To find :

        1. Let .

        2. The derivative of cosine is negative sine:

        3. Then, apply the chain rule. Multiply by :

          1. The derivative of a constant times a function is the constant times the derivative of the function.

            1. Apply the power rule: goes to

            So, the result is:

          The result of the chain rule is:

        To find :

        1. Let .

        2. The derivative of sine is cosine:

        3. Then, apply the chain rule. Multiply by :

          1. The derivative of a constant times a function is the constant times the derivative of the function.

            1. Apply the power rule: goes to

            So, the result is:

          The result of the chain rule is:

        Now plug in to the quotient rule:

    To find :

    1. Let .

    2. The derivative of cosine is negative sine:

    3. Then, apply the chain rule. Multiply by :

      1. The derivative of a constant times a function is the constant times the derivative of the function.

        1. Apply the power rule: goes to

        So, the result is:

      The result of the chain rule is:

    Now plug in to the quotient rule:

  2. Now simplify:


The answer is:

The graph
The first derivative [src]
          2                           
-2 - 2*cot (2*x)   6*cot(2*x)*sin(6*x)
---------------- + -------------------
    cos(6*x)               2          
                        cos (6*x)     
$$\frac{- 2 \cot^{2}{\left(2 x \right)} - 2}{\cos{\left(6 x \right)}} + \frac{6 \sin{\left(6 x \right)} \cot{\left(2 x \right)}}{\cos^{2}{\left(6 x \right)}}$$
The second derivative [src]
  /                               /         2     \              /       2     \         \
  |  /       2     \              |    2*sin (6*x)|            6*\1 + cot (2*x)/*sin(6*x)|
4*|2*\1 + cot (2*x)/*cot(2*x) + 9*|1 + -----------|*cot(2*x) - --------------------------|
  |                               |        2      |                     cos(6*x)         |
  \                               \     cos (6*x) /                                      /
------------------------------------------------------------------------------------------
                                         cos(6*x)                                         
$$\frac{4 \left(9 \left(\frac{2 \sin^{2}{\left(6 x \right)}}{\cos^{2}{\left(6 x \right)}} + 1\right) \cot{\left(2 x \right)} - \frac{6 \left(\cot^{2}{\left(2 x \right)} + 1\right) \sin{\left(6 x \right)}}{\cos{\left(6 x \right)}} + 2 \left(\cot^{2}{\left(2 x \right)} + 1\right) \cot{\left(2 x \right)}\right)}{\cos{\left(6 x \right)}}$$
The third derivative [src]
  /                                                                                                                         /         2     \                  \
  |                                                                                                                         |    6*sin (6*x)|                  |
  |                                                                                                                      27*|5 + -----------|*cot(2*x)*sin(6*x)|
  |                     /         2     \                                            /       2     \                        |        2      |                  |
  |     /       2     \ |    2*sin (6*x)|     /       2     \ /         2     \   18*\1 + cot (2*x)/*cot(2*x)*sin(6*x)      \     cos (6*x) /                  |
8*|- 27*\1 + cot (2*x)/*|1 + -----------| - 2*\1 + cot (2*x)/*\1 + 3*cot (2*x)/ + ------------------------------------ + --------------------------------------|
  |                     |        2      |                                                       cos(6*x)                                cos(6*x)               |
  \                     \     cos (6*x) /                                                                                                                      /
----------------------------------------------------------------------------------------------------------------------------------------------------------------
                                                                            cos(6*x)                                                                            
$$\frac{8 \left(- 27 \left(\frac{2 \sin^{2}{\left(6 x \right)}}{\cos^{2}{\left(6 x \right)}} + 1\right) \left(\cot^{2}{\left(2 x \right)} + 1\right) + \frac{27 \left(\frac{6 \sin^{2}{\left(6 x \right)}}{\cos^{2}{\left(6 x \right)}} + 5\right) \sin{\left(6 x \right)} \cot{\left(2 x \right)}}{\cos{\left(6 x \right)}} - 2 \left(\cot^{2}{\left(2 x \right)} + 1\right) \left(3 \cot^{2}{\left(2 x \right)} + 1\right) + \frac{18 \left(\cot^{2}{\left(2 x \right)} + 1\right) \sin{\left(6 x \right)} \cot{\left(2 x \right)}}{\cos{\left(6 x \right)}}\right)}{\cos{\left(6 x \right)}}$$