Mister Exam

Derivative of cos(z(z+1))

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
cos(z*(z + 1))
$$\cos{\left(z \left(z + 1\right) \right)}$$
cos(z*(z + 1))
Detail solution
  1. Let .

  2. The derivative of cosine is negative sine:

  3. Then, apply the chain rule. Multiply by :

    1. Apply the product rule:

      ; to find :

      1. Apply the power rule: goes to

      ; to find :

      1. Differentiate term by term:

        1. Apply the power rule: goes to

        2. The derivative of the constant is zero.

        The result is:

      The result is:

    The result of the chain rule is:

  4. Now simplify:


The answer is:

The graph
The first derivative [src]
-(1 + 2*z)*sin(z*(z + 1))
$$- \left(2 z + 1\right) \sin{\left(z \left(z + 1\right) \right)}$$
The second derivative [src]
 /                            2               \
-\2*sin(z*(1 + z)) + (1 + 2*z) *cos(z*(1 + z))/
$$- (\left(2 z + 1\right)^{2} \cos{\left(z \left(z + 1\right) \right)} + 2 \sin{\left(z \left(z + 1\right) \right)})$$
The third derivative [src]
          /                             2               \
(1 + 2*z)*\-6*cos(z*(1 + z)) + (1 + 2*z) *sin(z*(1 + z))/
$$\left(2 z + 1\right) \left(\left(2 z + 1\right)^{2} \sin{\left(z \left(z + 1\right) \right)} - 6 \cos{\left(z \left(z + 1\right) \right)}\right)$$