Detail solution
-
Let .
-
The derivative of cosine is negative sine:
-
Then, apply the chain rule. Multiply by :
-
Apply the product rule:
; to find :
-
Apply the power rule: goes to
; to find :
-
Differentiate term by term:
-
Apply the power rule: goes to
-
The derivative of the constant is zero.
The result is:
The result is:
The result of the chain rule is:
-
Now simplify:
The answer is:
The first derivative
[src]
-(1 + 2*z)*sin(z*(z + 1))
$$- \left(2 z + 1\right) \sin{\left(z \left(z + 1\right) \right)}$$
The second derivative
[src]
/ 2 \
-\2*sin(z*(1 + z)) + (1 + 2*z) *cos(z*(1 + z))/
$$- (\left(2 z + 1\right)^{2} \cos{\left(z \left(z + 1\right) \right)} + 2 \sin{\left(z \left(z + 1\right) \right)})$$
The third derivative
[src]
/ 2 \
(1 + 2*z)*\-6*cos(z*(1 + z)) + (1 + 2*z) *sin(z*(1 + z))/
$$\left(2 z + 1\right) \left(\left(2 z + 1\right)^{2} \sin{\left(z \left(z + 1\right) \right)} - 6 \cos{\left(z \left(z + 1\right) \right)}\right)$$