Mister Exam

Other calculators


cosx^2+x^2

Derivative of cosx^2+x^2

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
   2       2
cos (x) + x 
x2+cos2(x)x^{2} + \cos^{2}{\left(x \right)}
Detail solution
  1. Differentiate x2+cos2(x)x^{2} + \cos^{2}{\left(x \right)} term by term:

    1. Let u=cos(x)u = \cos{\left(x \right)}.

    2. Apply the power rule: u2u^{2} goes to 2u2 u

    3. Then, apply the chain rule. Multiply by ddxcos(x)\frac{d}{d x} \cos{\left(x \right)}:

      1. The derivative of cosine is negative sine:

        ddxcos(x)=sin(x)\frac{d}{d x} \cos{\left(x \right)} = - \sin{\left(x \right)}

      The result of the chain rule is:

      2sin(x)cos(x)- 2 \sin{\left(x \right)} \cos{\left(x \right)}

    4. Apply the power rule: x2x^{2} goes to 2x2 x

    The result is: 2x2sin(x)cos(x)2 x - 2 \sin{\left(x \right)} \cos{\left(x \right)}

  2. Now simplify:

    2xsin(2x)2 x - \sin{\left(2 x \right)}


The answer is:

2xsin(2x)2 x - \sin{\left(2 x \right)}

The graph
02468-8-6-4-2-1010200-100
The first derivative [src]
2*x - 2*cos(x)*sin(x)
2x2sin(x)cos(x)2 x - 2 \sin{\left(x \right)} \cos{\left(x \right)}
The second derivative [src]
  /       2         2   \
2*\1 + sin (x) - cos (x)/
2(sin2(x)cos2(x)+1)2 \left(\sin^{2}{\left(x \right)} - \cos^{2}{\left(x \right)} + 1\right)
The third derivative [src]
8*cos(x)*sin(x)
8sin(x)cos(x)8 \sin{\left(x \right)} \cos{\left(x \right)}
The graph
Derivative of cosx^2+x^2