Mister Exam

Other calculators


cos(x^2-4*x)

Derivative of cos(x^2-4*x)

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
   / 2      \
cos\x  - 4*x/
$$\cos{\left(x^{2} - 4 x \right)}$$
cos(x^2 - 4*x)
Detail solution
  1. Let .

  2. The derivative of cosine is negative sine:

  3. Then, apply the chain rule. Multiply by :

    1. Differentiate term by term:

      1. Apply the power rule: goes to

      2. The derivative of a constant times a function is the constant times the derivative of the function.

        1. Apply the power rule: goes to

        So, the result is:

      The result is:

    The result of the chain rule is:

  4. Now simplify:


The answer is:

The graph
The first derivative [src]
               / 2      \
-(-4 + 2*x)*sin\x  - 4*x/
$$- \left(2 x - 4\right) \sin{\left(x^{2} - 4 x \right)}$$
The second derivative [src]
   /          2                                  \
-2*\2*(-2 + x) *cos(x*(-4 + x)) + sin(x*(-4 + x))/
$$- 2 \left(2 \left(x - 2\right)^{2} \cos{\left(x \left(x - 4\right) \right)} + \sin{\left(x \left(x - 4\right) \right)}\right)$$
The third derivative [src]
           /                               2                \
4*(-2 + x)*\-3*cos(x*(-4 + x)) + 2*(-2 + x) *sin(x*(-4 + x))/
$$4 \left(x - 2\right) \left(2 \left(x - 2\right)^{2} \sin{\left(x \left(x - 4\right) \right)} - 3 \cos{\left(x \left(x - 4\right) \right)}\right)$$
The graph
Derivative of cos(x^2-4*x)