Mister Exam

Derivative of (cosx)^loge(x)

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
   log(x)   
cos      (x)
------------
     / 1\   
  log\e /   
$$\frac{\cos^{\log{\left(x \right)}}{\left(x \right)}}{\log{\left(e^{1} \right)}}$$
cos(x)^log(x)/log(exp(1))
Detail solution
  1. The derivative of a constant times a function is the constant times the derivative of the function.

    1. Don't know the steps in finding this derivative.

      But the derivative is

    So, the result is:

  2. Now simplify:


The answer is:

The graph
The first derivative [src]
   log(x)    /log(cos(x))   log(x)*sin(x)\
cos      (x)*|----------- - -------------|
             \     x            cos(x)   /
------------------------------------------
                    / 1\                  
                 log\e /                  
$$\frac{\left(- \frac{\log{\left(x \right)} \sin{\left(x \right)}}{\cos{\left(x \right)}} + \frac{\log{\left(\cos{\left(x \right)} \right)}}{x}\right) \cos^{\log{\left(x \right)}}{\left(x \right)}}{\log{\left(e^{1} \right)}}$$
The second derivative [src]
              /                                 2                    2                              \ 
    log(x)    |  /  log(cos(x))   log(x)*sin(x)\    log(cos(x))   sin (x)*log(x)   2*sin(x)         | 
-cos      (x)*|- |- ----------- + -------------|  + ----------- + -------------- + -------- + log(x)| 
              |  \       x            cos(x)   /          2             2          x*cos(x)         | 
              \                                          x           cos (x)                        / 
------------------------------------------------------------------------------------------------------
                                                  / 1\                                                
                                               log\e /                                                
$$- \frac{\left(- \left(\frac{\log{\left(x \right)} \sin{\left(x \right)}}{\cos{\left(x \right)}} - \frac{\log{\left(\cos{\left(x \right)} \right)}}{x}\right)^{2} + \frac{\log{\left(x \right)} \sin^{2}{\left(x \right)}}{\cos^{2}{\left(x \right)}} + \log{\left(x \right)} + \frac{2 \sin{\left(x \right)}}{x \cos{\left(x \right)}} + \frac{\log{\left(\cos{\left(x \right)} \right)}}{x^{2}}\right) \cos^{\log{\left(x \right)}}{\left(x \right)}}{\log{\left(e^{1} \right)}}$$
The third derivative [src]
              /                               3                                         /                 2                              \                                                      3                  2   \ 
    log(x)    |/  log(cos(x))   log(x)*sin(x)\    3     /  log(cos(x))   log(x)*sin(x)\ |log(cos(x))   sin (x)*log(x)   2*sin(x)         |   2*log(cos(x))    3*sin(x)   2*log(x)*sin(x)   2*sin (x)*log(x)   3*sin (x)| 
-cos      (x)*||- ----------- + -------------|  + - - 3*|- ----------- + -------------|*|----------- + -------------- + -------- + log(x)| - ------------- - --------- + --------------- + ---------------- + ---------| 
              |\       x            cos(x)   /    x     \       x            cos(x)   / |      2             2          x*cos(x)         |          3         2               cos(x)              3                2   | 
              \                                                                         \     x           cos (x)                        /         x         x *cos(x)                         cos (x)        x*cos (x)/ 
-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
                                                                                                            / 1\                                                                                                         
                                                                                                         log\e /                                                                                                         
$$- \frac{\left(\left(\frac{\log{\left(x \right)} \sin{\left(x \right)}}{\cos{\left(x \right)}} - \frac{\log{\left(\cos{\left(x \right)} \right)}}{x}\right)^{3} - 3 \left(\frac{\log{\left(x \right)} \sin{\left(x \right)}}{\cos{\left(x \right)}} - \frac{\log{\left(\cos{\left(x \right)} \right)}}{x}\right) \left(\frac{\log{\left(x \right)} \sin^{2}{\left(x \right)}}{\cos^{2}{\left(x \right)}} + \log{\left(x \right)} + \frac{2 \sin{\left(x \right)}}{x \cos{\left(x \right)}} + \frac{\log{\left(\cos{\left(x \right)} \right)}}{x^{2}}\right) + \frac{2 \log{\left(x \right)} \sin^{3}{\left(x \right)}}{\cos^{3}{\left(x \right)}} + \frac{2 \log{\left(x \right)} \sin{\left(x \right)}}{\cos{\left(x \right)}} + \frac{3 \sin^{2}{\left(x \right)}}{x \cos^{2}{\left(x \right)}} + \frac{3}{x} - \frac{3 \sin{\left(x \right)}}{x^{2} \cos{\left(x \right)}} - \frac{2 \log{\left(\cos{\left(x \right)} \right)}}{x^{3}}\right) \cos^{\log{\left(x \right)}}{\left(x \right)}}{\log{\left(e^{1} \right)}}$$