Mister Exam

Other calculators

Derivative of cos(x+(2*pi/3))-tan(x-(pi/4))

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
   /    2*pi\      /    pi\
cos|x + ----| - tan|x - --|
   \     3  /      \    4 /
$$\cos{\left(x + \frac{2 \pi}{3} \right)} - \tan{\left(x - \frac{\pi}{4} \right)}$$
cos(x + (2*pi)/3) - tan(x - pi/4)
Detail solution
  1. Differentiate term by term:

    1. Let .

    2. The derivative of cosine is negative sine:

    3. Then, apply the chain rule. Multiply by :

      1. Differentiate term by term:

        1. Apply the power rule: goes to

        2. The derivative of the constant is zero.

        The result is:

      The result of the chain rule is:

    4. The derivative of a constant times a function is the constant times the derivative of the function.

      1. Rewrite the function to be differentiated:

      2. Apply the quotient rule, which is:

        and .

        To find :

        1. Let .

        2. The derivative of sine is cosine:

        3. Then, apply the chain rule. Multiply by :

          1. Differentiate term by term:

            1. Apply the power rule: goes to

            2. The derivative of the constant is zero.

            The result is:

          The result of the chain rule is:

        To find :

        1. Let .

        2. The derivative of cosine is negative sine:

        3. Then, apply the chain rule. Multiply by :

          1. Differentiate term by term:

            1. Apply the power rule: goes to

            2. The derivative of the constant is zero.

            The result is:

          The result of the chain rule is:

        Now plug in to the quotient rule:

      So, the result is:

    The result is:

  2. Now simplify:


The answer is:

The graph
The first derivative [src]
        2/    pi\      /    2*pi\
-1 - tan |x - --| - sin|x + ----|
         \    4 /      \     3  /
$$- \sin{\left(x + \frac{2 \pi}{3} \right)} - \tan^{2}{\left(x - \frac{\pi}{4} \right)} - 1$$
The second derivative [src]
  /       2/    pi\\    /    pi\      /    pi\
2*|1 + cot |x + --||*cot|x + --| + sin|x + --|
  \        \    4 //    \    4 /      \    6 /
$$2 \left(\cot^{2}{\left(x + \frac{\pi}{4} \right)} + 1\right) \cot{\left(x + \frac{\pi}{4} \right)} + \sin{\left(x + \frac{\pi}{6} \right)}$$
3-я производная [src]
                      2                                                  
    /       2/    pi\\         2/    pi\ /       2/    pi\\      /    pi\
- 2*|1 + cot |x + --||  - 4*cot |x + --|*|1 + cot |x + --|| + cos|x + --|
    \        \    4 //          \    4 / \        \    4 //      \    6 /
$$- 2 \left(\cot^{2}{\left(x + \frac{\pi}{4} \right)} + 1\right)^{2} - 4 \left(\cot^{2}{\left(x + \frac{\pi}{4} \right)} + 1\right) \cot^{2}{\left(x + \frac{\pi}{4} \right)} + \cos{\left(x + \frac{\pi}{6} \right)}$$
The third derivative [src]
                      2                                                  
    /       2/    pi\\         2/    pi\ /       2/    pi\\      /    pi\
- 2*|1 + cot |x + --||  - 4*cot |x + --|*|1 + cot |x + --|| + cos|x + --|
    \        \    4 //          \    4 / \        \    4 //      \    6 /
$$- 2 \left(\cot^{2}{\left(x + \frac{\pi}{4} \right)} + 1\right)^{2} - 4 \left(\cot^{2}{\left(x + \frac{\pi}{4} \right)} + 1\right) \cot^{2}{\left(x + \frac{\pi}{4} \right)} + \cos{\left(x + \frac{\pi}{6} \right)}$$