Apply the quotient rule, which is:
and .
To find :
The derivative of cosine is negative sine:
To find :
Differentiate term by term:
The derivative of the constant is zero.
Apply the power rule: goes to
The result is:
Now plug in to the quotient rule:
Now simplify:
The answer is:
sin(x) cos(x)
- ------ - --------
x + 1 2
(x + 1)
2*sin(x) 2*cos(x)
-cos(x) + -------- + --------
1 + x 2
(1 + x)
-----------------------------
1 + x
360*cos(x) 120*sin(x) 6*sin(x) 30*cos(x) 720*cos(x) 720*sin(x)
-cos(x) - ---------- - ---------- + -------- + --------- + ---------- + ----------
4 3 1 + x 2 6 5
(1 + x) (1 + x) (1 + x) (1 + x) (1 + x)
----------------------------------------------------------------------------------
1 + x
6*cos(x) 6*sin(x) 3*cos(x)
- -------- - -------- + -------- + sin(x)
3 2 1 + x
(1 + x) (1 + x)
-----------------------------------------
1 + x