Apply the quotient rule, which is:
and .
To find :
The derivative of cosine is negative sine:
To find :
Differentiate term by term:
The derivative of the constant is zero.
Apply the power rule: goes to
The result is:
Now plug in to the quotient rule:
Now simplify:
The answer is:
2*sin(x) 2*cos(x) -cos(x) + -------- + -------- 1 + x 2 (1 + x) ----------------------------- 1 + x
360*cos(x) 120*sin(x) 6*sin(x) 30*cos(x) 720*cos(x) 720*sin(x) -cos(x) - ---------- - ---------- + -------- + --------- + ---------- + ---------- 4 3 1 + x 2 6 5 (1 + x) (1 + x) (1 + x) (1 + x) (1 + x) ---------------------------------------------------------------------------------- 1 + x