Detail solution
-
Apply the quotient rule, which is:
and .
To find :
-
The derivative of cosine is negative sine:
To find :
-
Differentiate term by term:
-
The derivative of the constant is zero.
-
Apply the power rule: goes to
The result is:
Now plug in to the quotient rule:
-
Now simplify:
The answer is:
The first derivative
[src]
sin(x) cos(x)
- ------ - --------
x + 1 2
(x + 1)
$$- \frac{\sin{\left(x \right)}}{x + 1} - \frac{\cos{\left(x \right)}}{\left(x + 1\right)^{2}}$$
The second derivative
[src]
2*sin(x) 2*cos(x)
-cos(x) + -------- + --------
1 + x 2
(1 + x)
-----------------------------
1 + x
$$\frac{- \cos{\left(x \right)} + \frac{2 \sin{\left(x \right)}}{x + 1} + \frac{2 \cos{\left(x \right)}}{\left(x + 1\right)^{2}}}{x + 1}$$
360*cos(x) 120*sin(x) 6*sin(x) 30*cos(x) 720*cos(x) 720*sin(x)
-cos(x) - ---------- - ---------- + -------- + --------- + ---------- + ----------
4 3 1 + x 2 6 5
(1 + x) (1 + x) (1 + x) (1 + x) (1 + x)
----------------------------------------------------------------------------------
1 + x
$$\frac{- \cos{\left(x \right)} + \frac{6 \sin{\left(x \right)}}{x + 1} + \frac{30 \cos{\left(x \right)}}{\left(x + 1\right)^{2}} - \frac{120 \sin{\left(x \right)}}{\left(x + 1\right)^{3}} - \frac{360 \cos{\left(x \right)}}{\left(x + 1\right)^{4}} + \frac{720 \sin{\left(x \right)}}{\left(x + 1\right)^{5}} + \frac{720 \cos{\left(x \right)}}{\left(x + 1\right)^{6}}}{x + 1}$$
The third derivative
[src]
6*cos(x) 6*sin(x) 3*cos(x)
- -------- - -------- + -------- + sin(x)
3 2 1 + x
(1 + x) (1 + x)
-----------------------------------------
1 + x
$$\frac{\sin{\left(x \right)} + \frac{3 \cos{\left(x \right)}}{x + 1} - \frac{6 \sin{\left(x \right)}}{\left(x + 1\right)^{2}} - \frac{6 \cos{\left(x \right)}}{\left(x + 1\right)^{3}}}{x + 1}$$