Mister Exam

Derivative of cos(x)/(x+1)

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
cos(x)
------
x + 1 
$$\frac{\cos{\left(x \right)}}{x + 1}$$
cos(x)/(x + 1)
Detail solution
  1. Apply the quotient rule, which is:

    and .

    To find :

    1. The derivative of cosine is negative sine:

    To find :

    1. Differentiate term by term:

      1. The derivative of the constant is zero.

      2. Apply the power rule: goes to

      The result is:

    Now plug in to the quotient rule:

  2. Now simplify:


The answer is:

The graph
The first derivative [src]
  sin(x)    cos(x) 
- ------ - --------
  x + 1           2
           (x + 1) 
$$- \frac{\sin{\left(x \right)}}{x + 1} - \frac{\cos{\left(x \right)}}{\left(x + 1\right)^{2}}$$
The second derivative [src]
          2*sin(x)   2*cos(x)
-cos(x) + -------- + --------
           1 + x            2
                     (1 + x) 
-----------------------------
            1 + x            
$$\frac{- \cos{\left(x \right)} + \frac{2 \sin{\left(x \right)}}{x + 1} + \frac{2 \cos{\left(x \right)}}{\left(x + 1\right)^{2}}}{x + 1}$$
6-я производная [src]
          360*cos(x)   120*sin(x)   6*sin(x)   30*cos(x)   720*cos(x)   720*sin(x)
-cos(x) - ---------- - ---------- + -------- + --------- + ---------- + ----------
                  4            3     1 + x             2           6            5 
           (1 + x)      (1 + x)                 (1 + x)     (1 + x)      (1 + x)  
----------------------------------------------------------------------------------
                                      1 + x                                       
$$\frac{- \cos{\left(x \right)} + \frac{6 \sin{\left(x \right)}}{x + 1} + \frac{30 \cos{\left(x \right)}}{\left(x + 1\right)^{2}} - \frac{120 \sin{\left(x \right)}}{\left(x + 1\right)^{3}} - \frac{360 \cos{\left(x \right)}}{\left(x + 1\right)^{4}} + \frac{720 \sin{\left(x \right)}}{\left(x + 1\right)^{5}} + \frac{720 \cos{\left(x \right)}}{\left(x + 1\right)^{6}}}{x + 1}$$
The third derivative [src]
  6*cos(x)   6*sin(x)   3*cos(x)         
- -------- - -------- + -------- + sin(x)
         3          2    1 + x           
  (1 + x)    (1 + x)                     
-----------------------------------------
                  1 + x                  
$$\frac{\sin{\left(x \right)} + \frac{3 \cos{\left(x \right)}}{x + 1} - \frac{6 \sin{\left(x \right)}}{\left(x + 1\right)^{2}} - \frac{6 \cos{\left(x \right)}}{\left(x + 1\right)^{3}}}{x + 1}$$