cos(x) ------ 2 9 - x
cos(x)/(9 - x^2)
Apply the quotient rule, which is:
and .
To find :
The derivative of cosine is negative sine:
To find :
Differentiate term by term:
The derivative of the constant is zero.
The derivative of a constant times a function is the constant times the derivative of the function.
Apply the power rule: goes to
So, the result is:
The result is:
Now plug in to the quotient rule:
Now simplify:
The answer is:
sin(x) 2*x*cos(x) - ------ + ---------- 2 2 9 - x / 2\ \9 - x /
/ 2 \ | 4*x | 2*|-1 + -------|*cos(x) | 2| 4*x*sin(x) \ -9 + x / - ---------- - ----------------------- + cos(x) 2 2 -9 + x -9 + x ----------------------------------------------- 2 -9 + x
/ 2 \ / 2 \ | 4*x | | 2*x | 6*|-1 + -------|*sin(x) 24*x*|-1 + -------|*cos(x) | 2| | 2| 6*x*cos(x) \ -9 + x / \ -9 + x / -sin(x) - ---------- + ----------------------- + -------------------------- 2 2 2 -9 + x -9 + x / 2\ \-9 + x / --------------------------------------------------------------------------- 2 -9 + x