Mister Exam

Other calculators

Derivative of cos(x)/(9-x^2)

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
cos(x)
------
     2
9 - x 
$$\frac{\cos{\left(x \right)}}{9 - x^{2}}$$
cos(x)/(9 - x^2)
Detail solution
  1. Apply the quotient rule, which is:

    and .

    To find :

    1. The derivative of cosine is negative sine:

    To find :

    1. Differentiate term by term:

      1. The derivative of the constant is zero.

      2. The derivative of a constant times a function is the constant times the derivative of the function.

        1. Apply the power rule: goes to

        So, the result is:

      The result is:

    Now plug in to the quotient rule:

  2. Now simplify:


The answer is:

The graph
The first derivative [src]
  sin(x)   2*x*cos(x)
- ------ + ----------
       2           2 
  9 - x    /     2\  
           \9 - x /  
$$\frac{2 x \cos{\left(x \right)}}{\left(9 - x^{2}\right)^{2}} - \frac{\sin{\left(x \right)}}{9 - x^{2}}$$
The second derivative [src]
                 /          2 \                
                 |       4*x  |                
               2*|-1 + -------|*cos(x)         
                 |           2|                
  4*x*sin(x)     \     -9 + x /                
- ---------- - ----------------------- + cos(x)
         2                   2                 
   -9 + x              -9 + x                  
-----------------------------------------------
                          2                    
                    -9 + x                     
$$\frac{- \frac{4 x \sin{\left(x \right)}}{x^{2} - 9} + \cos{\left(x \right)} - \frac{2 \left(\frac{4 x^{2}}{x^{2} - 9} - 1\right) \cos{\left(x \right)}}{x^{2} - 9}}{x^{2} - 9}$$
The third derivative [src]
                         /          2 \               /          2 \       
                         |       4*x  |               |       2*x  |       
                       6*|-1 + -------|*sin(x)   24*x*|-1 + -------|*cos(x)
                         |           2|               |           2|       
          6*x*cos(x)     \     -9 + x /               \     -9 + x /       
-sin(x) - ---------- + ----------------------- + --------------------------
                 2                   2                            2        
           -9 + x              -9 + x                    /      2\         
                                                         \-9 + x /         
---------------------------------------------------------------------------
                                        2                                  
                                  -9 + x                                   
$$\frac{- \frac{6 x \cos{\left(x \right)}}{x^{2} - 9} + \frac{24 x \left(\frac{2 x^{2}}{x^{2} - 9} - 1\right) \cos{\left(x \right)}}{\left(x^{2} - 9\right)^{2}} - \sin{\left(x \right)} + \frac{6 \left(\frac{4 x^{2}}{x^{2} - 9} - 1\right) \sin{\left(x \right)}}{x^{2} - 9}}{x^{2} - 9}$$