Mister Exam

Other calculators


(cos(2*x))^(-0.5)

Derivative of (cos(2*x))^(-0.5)

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
     1      
------------
  __________
\/ cos(2*x) 
$$\frac{1}{\sqrt{\cos{\left(2 x \right)}}}$$
d /     1      \
--|------------|
dx|  __________|
  \\/ cos(2*x) /
$$\frac{d}{d x} \frac{1}{\sqrt{\cos{\left(2 x \right)}}}$$
Detail solution
  1. Let .

  2. Apply the power rule: goes to

  3. Then, apply the chain rule. Multiply by :

    1. Let .

    2. The derivative of cosine is negative sine:

    3. Then, apply the chain rule. Multiply by :

      1. The derivative of a constant times a function is the constant times the derivative of the function.

        1. Apply the power rule: goes to

        So, the result is:

      The result of the chain rule is:

    The result of the chain rule is:


The answer is:

The graph
The first derivative [src]
  sin(2*x) 
-----------
   3/2     
cos   (2*x)
$$\frac{\sin{\left(2 x \right)}}{\cos^{\frac{3}{2}}{\left(2 x \right)}}$$
The second derivative [src]
         2     
    3*sin (2*x)
2 + -----------
        2      
     cos (2*x) 
---------------
    __________ 
  \/ cos(2*x)  
$$\frac{\frac{3 \sin^{2}{\left(2 x \right)}}{\cos^{2}{\left(2 x \right)}} + 2}{\sqrt{\cos{\left(2 x \right)}}}$$
The third derivative [src]
/           2     \         
|     15*sin (2*x)|         
|14 + ------------|*sin(2*x)
|         2       |         
\      cos (2*x)  /         
----------------------------
           3/2              
        cos   (2*x)         
$$\frac{\left(\frac{15 \sin^{2}{\left(2 x \right)}}{\cos^{2}{\left(2 x \right)}} + 14\right) \sin{\left(2 x \right)}}{\cos^{\frac{3}{2}}{\left(2 x \right)}}$$
The graph
Derivative of (cos(2*x))^(-0.5)