Mister Exam

Other calculators


cos^2*(lnx)

Derivative of cos^2*(lnx)

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
   2        
cos (log(x))
$$\cos^{2}{\left(\log{\left(x \right)} \right)}$$
d /   2        \
--\cos (log(x))/
dx              
$$\frac{d}{d x} \cos^{2}{\left(\log{\left(x \right)} \right)}$$
Detail solution
  1. Let .

  2. Apply the power rule: goes to

  3. Then, apply the chain rule. Multiply by :

    1. Let .

    2. The derivative of cosine is negative sine:

    3. Then, apply the chain rule. Multiply by :

      1. The derivative of is .

      The result of the chain rule is:

    The result of the chain rule is:

  4. Now simplify:


The answer is:

The graph
The first derivative [src]
-2*cos(log(x))*sin(log(x))
--------------------------
            x             
$$- \frac{2 \sin{\left(\log{\left(x \right)} \right)} \cos{\left(\log{\left(x \right)} \right)}}{x}$$
The second derivative [src]
  /   2              2                                  \
2*\sin (log(x)) - cos (log(x)) + cos(log(x))*sin(log(x))/
---------------------------------------------------------
                             2                           
                            x                            
$$\frac{2 \left(\sin^{2}{\left(\log{\left(x \right)} \right)} + \sin{\left(\log{\left(x \right)} \right)} \cos{\left(\log{\left(x \right)} \right)} - \cos^{2}{\left(\log{\left(x \right)} \right)}\right)}{x^{2}}$$
The third derivative [src]
  /       2                2                                    \
2*\- 3*sin (log(x)) + 3*cos (log(x)) + 2*cos(log(x))*sin(log(x))/
-----------------------------------------------------------------
                                 3                               
                                x                                
$$\frac{2 \left(- 3 \sin^{2}{\left(\log{\left(x \right)} \right)} + 2 \sin{\left(\log{\left(x \right)} \right)} \cos{\left(\log{\left(x \right)} \right)} + 3 \cos^{2}{\left(\log{\left(x \right)} \right)}\right)}{x^{3}}$$
The graph
Derivative of cos^2*(lnx)