Mister Exam

Derivative of cos^(2)7x

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
   2     
cos (7*x)
cos2(7x)\cos^{2}{\left(7 x \right)}
d /   2     \
--\cos (7*x)/
dx           
ddxcos2(7x)\frac{d}{d x} \cos^{2}{\left(7 x \right)}
Detail solution
  1. Let u=cos(7x)u = \cos{\left(7 x \right)}.

  2. Apply the power rule: u2u^{2} goes to 2u2 u

  3. Then, apply the chain rule. Multiply by ddxcos(7x)\frac{d}{d x} \cos{\left(7 x \right)}:

    1. Let u=7xu = 7 x.

    2. The derivative of cosine is negative sine:

      dducos(u)=sin(u)\frac{d}{d u} \cos{\left(u \right)} = - \sin{\left(u \right)}

    3. Then, apply the chain rule. Multiply by ddx7x\frac{d}{d x} 7 x:

      1. The derivative of a constant times a function is the constant times the derivative of the function.

        1. Apply the power rule: xx goes to 11

        So, the result is: 77

      The result of the chain rule is:

      7sin(7x)- 7 \sin{\left(7 x \right)}

    The result of the chain rule is:

    14sin(7x)cos(7x)- 14 \sin{\left(7 x \right)} \cos{\left(7 x \right)}

  4. Now simplify:

    7sin(14x)- 7 \sin{\left(14 x \right)}


The answer is:

7sin(14x)- 7 \sin{\left(14 x \right)}

The graph
02468-8-6-4-2-1010-2020
The first derivative [src]
-14*cos(7*x)*sin(7*x)
14sin(7x)cos(7x)- 14 \sin{\left(7 x \right)} \cos{\left(7 x \right)}
The second derivative [src]
   /   2           2     \
98*\sin (7*x) - cos (7*x)/
98(sin2(7x)cos2(7x))98 \left(\sin^{2}{\left(7 x \right)} - \cos^{2}{\left(7 x \right)}\right)
The third derivative [src]
2744*cos(7*x)*sin(7*x)
2744sin(7x)cos(7x)2744 \sin{\left(7 x \right)} \cos{\left(7 x \right)}
The graph
Derivative of cos^(2)7x