Mister Exam

Other calculators


cos^3(2x^2+1)

Derivative of cos^3(2x^2+1)

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
   3/   2    \
cos \2*x  + 1/
$$\cos^{3}{\left(2 x^{2} + 1 \right)}$$
d /   3/   2    \\
--\cos \2*x  + 1//
dx                
$$\frac{d}{d x} \cos^{3}{\left(2 x^{2} + 1 \right)}$$
Detail solution
  1. Let .

  2. Apply the power rule: goes to

  3. Then, apply the chain rule. Multiply by :

    1. Let .

    2. The derivative of cosine is negative sine:

    3. Then, apply the chain rule. Multiply by :

      1. Differentiate term by term:

        1. The derivative of a constant times a function is the constant times the derivative of the function.

          1. Apply the power rule: goes to

          So, the result is:

        2. The derivative of the constant is zero.

        The result is:

      The result of the chain rule is:

    The result of the chain rule is:

  4. Now simplify:


The answer is:

The graph
The first derivative [src]
         2/   2    \    /   2    \
-12*x*cos \2*x  + 1/*sin\2*x  + 1/
$$- 12 x \sin{\left(2 x^{2} + 1 \right)} \cos^{2}{\left(2 x^{2} + 1 \right)}$$
The second derivative [src]
   /     /       2\    /       2\      2    2/       2\      2    2/       2\\    /       2\
12*\- cos\1 + 2*x /*sin\1 + 2*x / - 4*x *cos \1 + 2*x / + 8*x *sin \1 + 2*x //*cos\1 + 2*x /
$$12 \cdot \left(8 x^{2} \sin^{2}{\left(2 x^{2} + 1 \right)} - 4 x^{2} \cos^{2}{\left(2 x^{2} + 1 \right)} - \sin{\left(2 x^{2} + 1 \right)} \cos{\left(2 x^{2} + 1 \right)}\right) \cos{\left(2 x^{2} + 1 \right)}$$
3-я производная [src]
     /       3/       2\      2    3/       2\        2/       2\    /       2\       2    2/       2\    /       2\\
48*x*\- 3*cos \1 + 2*x / - 8*x *sin \1 + 2*x / + 6*sin \1 + 2*x /*cos\1 + 2*x / + 28*x *cos \1 + 2*x /*sin\1 + 2*x //
$$48 x \left(- 8 x^{2} \sin^{3}{\left(2 x^{2} + 1 \right)} + 28 x^{2} \sin{\left(2 x^{2} + 1 \right)} \cos^{2}{\left(2 x^{2} + 1 \right)} + 6 \sin^{2}{\left(2 x^{2} + 1 \right)} \cos{\left(2 x^{2} + 1 \right)} - 3 \cos^{3}{\left(2 x^{2} + 1 \right)}\right)$$
The third derivative [src]
     /       3/       2\      2    3/       2\        2/       2\    /       2\       2    2/       2\    /       2\\
48*x*\- 3*cos \1 + 2*x / - 8*x *sin \1 + 2*x / + 6*sin \1 + 2*x /*cos\1 + 2*x / + 28*x *cos \1 + 2*x /*sin\1 + 2*x //
$$48 x \left(- 8 x^{2} \sin^{3}{\left(2 x^{2} + 1 \right)} + 28 x^{2} \sin{\left(2 x^{2} + 1 \right)} \cos^{2}{\left(2 x^{2} + 1 \right)} + 6 \sin^{2}{\left(2 x^{2} + 1 \right)} \cos{\left(2 x^{2} + 1 \right)} - 3 \cos^{3}{\left(2 x^{2} + 1 \right)}\right)$$
The graph
Derivative of cos^3(2x^2+1)