3/ 2 \ cos \2*x + 1/
d / 3/ 2 \\ --\cos \2*x + 1// dx
Let .
Apply the power rule: goes to
Then, apply the chain rule. Multiply by :
Let .
The derivative of cosine is negative sine:
Then, apply the chain rule. Multiply by :
Differentiate term by term:
The derivative of a constant times a function is the constant times the derivative of the function.
Apply the power rule: goes to
So, the result is:
The derivative of the constant is zero.
The result is:
The result of the chain rule is:
The result of the chain rule is:
Now simplify:
The answer is:
2/ 2 \ / 2 \ -12*x*cos \2*x + 1/*sin\2*x + 1/
/ / 2\ / 2\ 2 2/ 2\ 2 2/ 2\\ / 2\ 12*\- cos\1 + 2*x /*sin\1 + 2*x / - 4*x *cos \1 + 2*x / + 8*x *sin \1 + 2*x //*cos\1 + 2*x /
/ 3/ 2\ 2 3/ 2\ 2/ 2\ / 2\ 2 2/ 2\ / 2\\ 48*x*\- 3*cos \1 + 2*x / - 8*x *sin \1 + 2*x / + 6*sin \1 + 2*x /*cos\1 + 2*x / + 28*x *cos \1 + 2*x /*sin\1 + 2*x //
/ 3/ 2\ 2 3/ 2\ 2/ 2\ / 2\ 2 2/ 2\ / 2\\ 48*x*\- 3*cos \1 + 2*x / - 8*x *sin \1 + 2*x / + 6*sin \1 + 2*x /*cos\1 + 2*x / + 28*x *cos \1 + 2*x /*sin\1 + 2*x //