Mister Exam

Other calculators


cos^3(2x^2+1)

Derivative of cos^3(2x^2+1)

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
   3/   2    \
cos \2*x  + 1/
cos3(2x2+1)\cos^{3}{\left(2 x^{2} + 1 \right)}
d /   3/   2    \\
--\cos \2*x  + 1//
dx                
ddxcos3(2x2+1)\frac{d}{d x} \cos^{3}{\left(2 x^{2} + 1 \right)}
Detail solution
  1. Let u=cos(2x2+1)u = \cos{\left(2 x^{2} + 1 \right)}.

  2. Apply the power rule: u3u^{3} goes to 3u23 u^{2}

  3. Then, apply the chain rule. Multiply by ddxcos(2x2+1)\frac{d}{d x} \cos{\left(2 x^{2} + 1 \right)}:

    1. Let u=2x2+1u = 2 x^{2} + 1.

    2. The derivative of cosine is negative sine:

      dducos(u)=sin(u)\frac{d}{d u} \cos{\left(u \right)} = - \sin{\left(u \right)}

    3. Then, apply the chain rule. Multiply by ddx(2x2+1)\frac{d}{d x} \left(2 x^{2} + 1\right):

      1. Differentiate 2x2+12 x^{2} + 1 term by term:

        1. The derivative of a constant times a function is the constant times the derivative of the function.

          1. Apply the power rule: x2x^{2} goes to 2x2 x

          So, the result is: 4x4 x

        2. The derivative of the constant 11 is zero.

        The result is: 4x4 x

      The result of the chain rule is:

      4xsin(2x2+1)- 4 x \sin{\left(2 x^{2} + 1 \right)}

    The result of the chain rule is:

    12xsin(2x2+1)cos2(2x2+1)- 12 x \sin{\left(2 x^{2} + 1 \right)} \cos^{2}{\left(2 x^{2} + 1 \right)}

  4. Now simplify:

    12xsin(2x2+1)cos2(2x2+1)- 12 x \sin{\left(2 x^{2} + 1 \right)} \cos^{2}{\left(2 x^{2} + 1 \right)}


The answer is:

12xsin(2x2+1)cos2(2x2+1)- 12 x \sin{\left(2 x^{2} + 1 \right)} \cos^{2}{\left(2 x^{2} + 1 \right)}

The graph
02468-8-6-4-2-1010-100100
The first derivative [src]
         2/   2    \    /   2    \
-12*x*cos \2*x  + 1/*sin\2*x  + 1/
12xsin(2x2+1)cos2(2x2+1)- 12 x \sin{\left(2 x^{2} + 1 \right)} \cos^{2}{\left(2 x^{2} + 1 \right)}
The second derivative [src]
   /     /       2\    /       2\      2    2/       2\      2    2/       2\\    /       2\
12*\- cos\1 + 2*x /*sin\1 + 2*x / - 4*x *cos \1 + 2*x / + 8*x *sin \1 + 2*x //*cos\1 + 2*x /
12(8x2sin2(2x2+1)4x2cos2(2x2+1)sin(2x2+1)cos(2x2+1))cos(2x2+1)12 \cdot \left(8 x^{2} \sin^{2}{\left(2 x^{2} + 1 \right)} - 4 x^{2} \cos^{2}{\left(2 x^{2} + 1 \right)} - \sin{\left(2 x^{2} + 1 \right)} \cos{\left(2 x^{2} + 1 \right)}\right) \cos{\left(2 x^{2} + 1 \right)}
3-я производная [src]
     /       3/       2\      2    3/       2\        2/       2\    /       2\       2    2/       2\    /       2\\
48*x*\- 3*cos \1 + 2*x / - 8*x *sin \1 + 2*x / + 6*sin \1 + 2*x /*cos\1 + 2*x / + 28*x *cos \1 + 2*x /*sin\1 + 2*x //
48x(8x2sin3(2x2+1)+28x2sin(2x2+1)cos2(2x2+1)+6sin2(2x2+1)cos(2x2+1)3cos3(2x2+1))48 x \left(- 8 x^{2} \sin^{3}{\left(2 x^{2} + 1 \right)} + 28 x^{2} \sin{\left(2 x^{2} + 1 \right)} \cos^{2}{\left(2 x^{2} + 1 \right)} + 6 \sin^{2}{\left(2 x^{2} + 1 \right)} \cos{\left(2 x^{2} + 1 \right)} - 3 \cos^{3}{\left(2 x^{2} + 1 \right)}\right)
The third derivative [src]
     /       3/       2\      2    3/       2\        2/       2\    /       2\       2    2/       2\    /       2\\
48*x*\- 3*cos \1 + 2*x / - 8*x *sin \1 + 2*x / + 6*sin \1 + 2*x /*cos\1 + 2*x / + 28*x *cos \1 + 2*x /*sin\1 + 2*x //
48x(8x2sin3(2x2+1)+28x2sin(2x2+1)cos2(2x2+1)+6sin2(2x2+1)cos(2x2+1)3cos3(2x2+1))48 x \left(- 8 x^{2} \sin^{3}{\left(2 x^{2} + 1 \right)} + 28 x^{2} \sin{\left(2 x^{2} + 1 \right)} \cos^{2}{\left(2 x^{2} + 1 \right)} + 6 \sin^{2}{\left(2 x^{2} + 1 \right)} \cos{\left(2 x^{2} + 1 \right)} - 3 \cos^{3}{\left(2 x^{2} + 1 \right)}\right)
The graph
Derivative of cos^3(2x^2+1)