6 cos (x)
cos(x)^6
Let u=cos(x)u = \cos{\left(x \right)}u=cos(x).
Apply the power rule: u6u^{6}u6 goes to 6u56 u^{5}6u5
Then, apply the chain rule. Multiply by ddxcos(x)\frac{d}{d x} \cos{\left(x \right)}dxdcos(x):
The derivative of cosine is negative sine:
The result of the chain rule is:
The answer is:
5 -6*cos (x)*sin(x)
4 / 2 2 \ 6*cos (x)*\- cos (x) + 5*sin (x)/
3 / 2 2 \ 24*cos (x)*\- 5*sin (x) + 4*cos (x)/*sin(x)