Detail solution
-
Let .
-
Apply the power rule: goes to
-
Then, apply the chain rule. Multiply by :
-
The derivative of cosine is negative sine:
The result of the chain rule is:
The answer is:
The first derivative
[src]
2*sin(x)
--------
3
cos (x)
$$\frac{2 \sin{\left(x \right)}}{\cos^{3}{\left(x \right)}}$$
The second derivative
[src]
/ 2 \
| 3*sin (x)|
2*|1 + ---------|
| 2 |
\ cos (x) /
-----------------
2
cos (x)
$$\frac{2 \left(\frac{3 \sin^{2}{\left(x \right)}}{\cos^{2}{\left(x \right)}} + 1\right)}{\cos^{2}{\left(x \right)}}$$
The third derivative
[src]
/ 2 \
| 3*sin (x)|
8*|2 + ---------|*sin(x)
| 2 |
\ cos (x) /
------------------------
3
cos (x)
$$\frac{8 \left(\frac{3 \sin^{2}{\left(x \right)}}{\cos^{2}{\left(x \right)}} + 2\right) \sin{\left(x \right)}}{\cos^{3}{\left(x \right)}}$$