5 cos (x) -------- sin(9*x)
cos(x)^5/sin(9*x)
Apply the quotient rule, which is:
and .
To find :
Let .
Apply the power rule: goes to
Then, apply the chain rule. Multiply by :
The derivative of cosine is negative sine:
The result of the chain rule is:
To find :
Let .
The derivative of sine is cosine:
Then, apply the chain rule. Multiply by :
The derivative of a constant times a function is the constant times the derivative of the function.
Apply the power rule: goes to
So, the result is:
The result of the chain rule is:
Now plug in to the quotient rule:
Now simplify:
The answer is:
5 4 9*cos (x)*cos(9*x) 5*cos (x)*sin(x) - ------------------ - ---------------- 2 sin(9*x) sin (9*x)
/ / 2 \ \ 3 | 2 2 2 | 2*cos (9*x)| 90*cos(x)*cos(9*x)*sin(x)| cos (x)*|- 5*cos (x) + 20*sin (x) + 81*cos (x)*|1 + -----------| + -------------------------| | | 2 | sin(9*x) | \ \ sin (9*x) / / --------------------------------------------------------------------------------------------- sin(9*x)
/ / 2 \ \ | 3 | 6*cos (9*x)| | | 729*cos (x)*|5 + -----------|*cos(9*x)| | / 2 \ / 2 2 \ | 2 | | 2 | / 2 2 \ 2 | 2*cos (9*x)| 135*\- cos (x) + 4*sin (x)/*cos(x)*cos(9*x) \ sin (9*x) / | -cos (x)*|5*\- 13*cos (x) + 12*sin (x)/*sin(x) + 1215*cos (x)*|1 + -----------|*sin(x) + ------------------------------------------- + --------------------------------------| | | 2 | sin(9*x) sin(9*x) | \ \ sin (9*x) / / ------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- sin(9*x)