Mister Exam

Derivative of cos^5x/sin9x

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
   5    
cos (x) 
--------
sin(9*x)
$$\frac{\cos^{5}{\left(x \right)}}{\sin{\left(9 x \right)}}$$
cos(x)^5/sin(9*x)
Detail solution
  1. Apply the quotient rule, which is:

    and .

    To find :

    1. Let .

    2. Apply the power rule: goes to

    3. Then, apply the chain rule. Multiply by :

      1. The derivative of cosine is negative sine:

      The result of the chain rule is:

    To find :

    1. Let .

    2. The derivative of sine is cosine:

    3. Then, apply the chain rule. Multiply by :

      1. The derivative of a constant times a function is the constant times the derivative of the function.

        1. Apply the power rule: goes to

        So, the result is:

      The result of the chain rule is:

    Now plug in to the quotient rule:

  2. Now simplify:


The answer is:

The graph
The first derivative [src]
       5                    4          
  9*cos (x)*cos(9*x)   5*cos (x)*sin(x)
- ------------------ - ----------------
         2                 sin(9*x)    
      sin (9*x)                        
$$- \frac{5 \sin{\left(x \right)} \cos^{4}{\left(x \right)}}{\sin{\left(9 x \right)}} - \frac{9 \cos^{5}{\left(x \right)} \cos{\left(9 x \right)}}{\sin^{2}{\left(9 x \right)}}$$
The second derivative [src]
        /                                      /         2     \                            \
   3    |       2            2            2    |    2*cos (9*x)|   90*cos(x)*cos(9*x)*sin(x)|
cos (x)*|- 5*cos (x) + 20*sin (x) + 81*cos (x)*|1 + -----------| + -------------------------|
        |                                      |        2      |            sin(9*x)        |
        \                                      \     sin (9*x) /                            /
---------------------------------------------------------------------------------------------
                                           sin(9*x)                                          
$$\frac{\left(81 \left(1 + \frac{2 \cos^{2}{\left(9 x \right)}}{\sin^{2}{\left(9 x \right)}}\right) \cos^{2}{\left(x \right)} + 20 \sin^{2}{\left(x \right)} + \frac{90 \sin{\left(x \right)} \cos{\left(x \right)} \cos{\left(9 x \right)}}{\sin{\left(9 x \right)}} - 5 \cos^{2}{\left(x \right)}\right) \cos^{3}{\left(x \right)}}{\sin{\left(9 x \right)}}$$
The third derivative [src]
         /                                                                                                                                         /         2     \         \ 
         |                                                                                                                                    3    |    6*cos (9*x)|         | 
         |                                                                                                                             729*cos (x)*|5 + -----------|*cos(9*x)| 
         |                                                    /         2     \              /     2           2   \                               |        2      |         | 
    2    |  /        2            2   \                  2    |    2*cos (9*x)|          135*\- cos (x) + 4*sin (x)/*cos(x)*cos(9*x)               \     sin (9*x) /         | 
-cos (x)*|5*\- 13*cos (x) + 12*sin (x)/*sin(x) + 1215*cos (x)*|1 + -----------|*sin(x) + ------------------------------------------- + --------------------------------------| 
         |                                                    |        2      |                            sin(9*x)                                   sin(9*x)               | 
         \                                                    \     sin (9*x) /                                                                                              / 
-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
                                                                                    sin(9*x)                                                                                   
$$- \frac{\left(1215 \left(1 + \frac{2 \cos^{2}{\left(9 x \right)}}{\sin^{2}{\left(9 x \right)}}\right) \sin{\left(x \right)} \cos^{2}{\left(x \right)} + \frac{729 \left(5 + \frac{6 \cos^{2}{\left(9 x \right)}}{\sin^{2}{\left(9 x \right)}}\right) \cos^{3}{\left(x \right)} \cos{\left(9 x \right)}}{\sin{\left(9 x \right)}} + \frac{135 \left(4 \sin^{2}{\left(x \right)} - \cos^{2}{\left(x \right)}\right) \cos{\left(x \right)} \cos{\left(9 x \right)}}{\sin{\left(9 x \right)}} + 5 \left(12 \sin^{2}{\left(x \right)} - 13 \cos^{2}{\left(x \right)}\right) \sin{\left(x \right)}\right) \cos^{2}{\left(x \right)}}{\sin{\left(9 x \right)}}$$