Mister Exam

Other calculators

Derivative of cos(3*x)^sin(4*x)

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
   sin(4*x)     
cos        (3*x)
$$\cos^{\sin{\left(4 x \right)}}{\left(3 x \right)}$$
cos(3*x)^sin(4*x)
Detail solution
  1. Don't know the steps in finding this derivative.

    But the derivative is


The answer is:

The graph
The first derivative [src]
   sin(4*x)      /                           3*sin(3*x)*sin(4*x)\
cos        (3*x)*|4*cos(4*x)*log(cos(3*x)) - -------------------|
                 \                                 cos(3*x)     /
$$\left(4 \log{\left(\cos{\left(3 x \right)} \right)} \cos{\left(4 x \right)} - \frac{3 \sin{\left(3 x \right)} \sin{\left(4 x \right)}}{\cos{\left(3 x \right)}}\right) \cos^{\sin{\left(4 x \right)}}{\left(3 x \right)}$$
The second derivative [src]
                 /                                                2                                                                        2              \
   sin(4*x)      |/                           3*sin(3*x)*sin(4*x)\                                             24*cos(4*x)*sin(3*x)   9*sin (3*x)*sin(4*x)|
cos        (3*x)*||4*cos(4*x)*log(cos(3*x)) - -------------------|  - 9*sin(4*x) - 16*log(cos(3*x))*sin(4*x) - -------------------- - --------------------|
                 |\                                 cos(3*x)     /                                                   cos(3*x)                 2           |
                 \                                                                                                                         cos (3*x)      /
$$\left(\left(4 \log{\left(\cos{\left(3 x \right)} \right)} \cos{\left(4 x \right)} - \frac{3 \sin{\left(3 x \right)} \sin{\left(4 x \right)}}{\cos{\left(3 x \right)}}\right)^{2} - 16 \log{\left(\cos{\left(3 x \right)} \right)} \sin{\left(4 x \right)} - \frac{9 \sin^{2}{\left(3 x \right)} \sin{\left(4 x \right)}}{\cos^{2}{\left(3 x \right)}} - \frac{24 \sin{\left(3 x \right)} \cos{\left(4 x \right)}}{\cos{\left(3 x \right)}} - 9 \sin{\left(4 x \right)}\right) \cos^{\sin{\left(4 x \right)}}{\left(3 x \right)}$$
The third derivative [src]
                 /                                                3                                                                                                 /                                              2                                     \          2                       3                                     \
   sin(4*x)      |/                           3*sin(3*x)*sin(4*x)\                                                 /                           3*sin(3*x)*sin(4*x)\ |                                         9*sin (3*x)*sin(4*x)   24*cos(4*x)*sin(3*x)|   108*sin (3*x)*cos(4*x)   54*sin (3*x)*sin(4*x)   90*sin(3*x)*sin(4*x)|
cos        (3*x)*||4*cos(4*x)*log(cos(3*x)) - -------------------|  - 108*cos(4*x) - 64*cos(4*x)*log(cos(3*x)) - 3*|4*cos(4*x)*log(cos(3*x)) - -------------------|*|9*sin(4*x) + 16*log(cos(3*x))*sin(4*x) + -------------------- + --------------------| - ---------------------- - --------------------- + --------------------|
                 |\                                 cos(3*x)     /                                                 \                                 cos(3*x)     / |                                                 2                    cos(3*x)      |            2                        3                    cos(3*x)      |
                 \                                                                                                                                                  \                                              cos (3*x)                             /         cos (3*x)                cos (3*x)                             /
$$\left(\left(4 \log{\left(\cos{\left(3 x \right)} \right)} \cos{\left(4 x \right)} - \frac{3 \sin{\left(3 x \right)} \sin{\left(4 x \right)}}{\cos{\left(3 x \right)}}\right)^{3} - 3 \left(4 \log{\left(\cos{\left(3 x \right)} \right)} \cos{\left(4 x \right)} - \frac{3 \sin{\left(3 x \right)} \sin{\left(4 x \right)}}{\cos{\left(3 x \right)}}\right) \left(16 \log{\left(\cos{\left(3 x \right)} \right)} \sin{\left(4 x \right)} + \frac{9 \sin^{2}{\left(3 x \right)} \sin{\left(4 x \right)}}{\cos^{2}{\left(3 x \right)}} + \frac{24 \sin{\left(3 x \right)} \cos{\left(4 x \right)}}{\cos{\left(3 x \right)}} + 9 \sin{\left(4 x \right)}\right) - 64 \log{\left(\cos{\left(3 x \right)} \right)} \cos{\left(4 x \right)} - \frac{54 \sin^{3}{\left(3 x \right)} \sin{\left(4 x \right)}}{\cos^{3}{\left(3 x \right)}} - \frac{108 \sin^{2}{\left(3 x \right)} \cos{\left(4 x \right)}}{\cos^{2}{\left(3 x \right)}} + \frac{90 \sin{\left(3 x \right)} \sin{\left(4 x \right)}}{\cos{\left(3 x \right)}} - 108 \cos{\left(4 x \right)}\right) \cos^{\sin{\left(4 x \right)}}{\left(3 x \right)}$$